Igor Ribeiro, Andreia Meixedo, Diogo Ribeiro, Túlio Nogueira Bittencourt
{"title":"桥梁状况评估的线性和非线性时间序列方法:文献综述","authors":"Igor Ribeiro, Andreia Meixedo, Diogo Ribeiro, Túlio Nogueira Bittencourt","doi":"10.1177/13694332241260133","DOIUrl":null,"url":null,"abstract":"Railway bridges are essential components of any transportation system and are typically subjected to several environmental and operational actions that can cause damage. Furthermore, they are not easily replaced, and their failure can have catastrophic consequences. Considering the expected lifespan of bridges, it is essential to guarantee their adequate serviceability and safety. In this scenario, emerges the Structural Health Monitoring (SHM), which allows the early identification of damage before it becomes critical. Damage identification is usually performed by the comparison between the damaged and undamaged responses obtained from monitoring data. Among the several features extracted from the responses, the time-series models exhibit a better performance, capability of early damage detection, and may also be applied within online damage detection strategies using unsupervised machine learning frameworks. In this paper, a review of advanced time-series methodologies for damage detection is presented. Initially, several time-series models often used in SHM are described, such as Autoregressive Models (AR), Recurrent Neural Networks (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). Later, the framework where these models are usually applied is also detailed, including the latest upgrades and most relevant results. Finally, the conclusions summarize and elucidate the current perspectives and research gaps on the time-series models.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear and nonlinear time-series methodologies for bridge condition assessment: A literature review\",\"authors\":\"Igor Ribeiro, Andreia Meixedo, Diogo Ribeiro, Túlio Nogueira Bittencourt\",\"doi\":\"10.1177/13694332241260133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Railway bridges are essential components of any transportation system and are typically subjected to several environmental and operational actions that can cause damage. Furthermore, they are not easily replaced, and their failure can have catastrophic consequences. Considering the expected lifespan of bridges, it is essential to guarantee their adequate serviceability and safety. In this scenario, emerges the Structural Health Monitoring (SHM), which allows the early identification of damage before it becomes critical. Damage identification is usually performed by the comparison between the damaged and undamaged responses obtained from monitoring data. Among the several features extracted from the responses, the time-series models exhibit a better performance, capability of early damage detection, and may also be applied within online damage detection strategies using unsupervised machine learning frameworks. In this paper, a review of advanced time-series methodologies for damage detection is presented. Initially, several time-series models often used in SHM are described, such as Autoregressive Models (AR), Recurrent Neural Networks (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). Later, the framework where these models are usually applied is also detailed, including the latest upgrades and most relevant results. Finally, the conclusions summarize and elucidate the current perspectives and research gaps on the time-series models.\",\"PeriodicalId\":50849,\"journal\":{\"name\":\"Advances in Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Structural Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241260133\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241260133","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Linear and nonlinear time-series methodologies for bridge condition assessment: A literature review
Railway bridges are essential components of any transportation system and are typically subjected to several environmental and operational actions that can cause damage. Furthermore, they are not easily replaced, and their failure can have catastrophic consequences. Considering the expected lifespan of bridges, it is essential to guarantee their adequate serviceability and safety. In this scenario, emerges the Structural Health Monitoring (SHM), which allows the early identification of damage before it becomes critical. Damage identification is usually performed by the comparison between the damaged and undamaged responses obtained from monitoring data. Among the several features extracted from the responses, the time-series models exhibit a better performance, capability of early damage detection, and may also be applied within online damage detection strategies using unsupervised machine learning frameworks. In this paper, a review of advanced time-series methodologies for damage detection is presented. Initially, several time-series models often used in SHM are described, such as Autoregressive Models (AR), Recurrent Neural Networks (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). Later, the framework where these models are usually applied is also detailed, including the latest upgrades and most relevant results. Finally, the conclusions summarize and elucidate the current perspectives and research gaps on the time-series models.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.