DeepTM:用于 DNN 训练的异构内存中的高效张量管理

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Haoran Zhou;Wei Rang;Hongyang Chen;Xiaobo Zhou;Dazhao Cheng
{"title":"DeepTM:用于 DNN 训练的异构内存中的高效张量管理","authors":"Haoran Zhou;Wei Rang;Hongyang Chen;Xiaobo Zhou;Dazhao Cheng","doi":"10.1109/TPDS.2024.3431910","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 11","pages":"1920-1935"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training\",\"authors\":\"Haoran Zhou;Wei Rang;Hongyang Chen;Xiaobo Zhou;Dazhao Cheng\",\"doi\":\"10.1109/TPDS.2024.3431910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 11\",\"pages\":\"1920-1935\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10606082/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606082/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络(DNN)已在图像分类、物体检测和自然语言处理等多个领域得到广泛应用。然而,大规模 DNN 模型的训练往往会遇到严重的内存瓶颈,这就要求对大量的张量进行有效管理。异构内存系统结合了持久内存(PM)模块和传统 DRAM,为解决 DNN 训练过程中的张量管理难题提供了经济可行的解决方案。然而,异构内存系统上现有的内存管理方法往往导致持久内存访问效率低、带宽利用率低以及模型特性分析不完整。为了克服这些障碍,我们引入了一种专为异构内存定制的高效张量管理方法 DeepTM,以缓解 DNN 训练过程中的内存瓶颈。DeepTM 采用页面级张量聚合来提高 PM 读写性能,并执行连续页面迁移来增加内存带宽。通过分析张量访问模式和模型特征,我们量化了整体性能,并将性能优化问题转化为整数线性规划框架。此外,我们还通过动态调整四个关键张量特征的权重来实现张量热识别,并利用深度强化学习(Deep Reinforcement Learning)制定了全局优化策略。为了验证我们方法的有效性,我们利用在基于 PM 的异构存储系统上运行的 TensorFlow 框架,实施并评估了 DeepTM。实验结果表明,与当前最先进的内存管理策略 AutoTM 和 Sentinel 相比,DeepTM 的性能分别提高了 36% 和 49%。此外,与 AutoTM 相比,我们的解决方案将开销减少了 18 倍,成本降低了 29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training
Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信