{"title":"DeepTM:用于 DNN 训练的异构内存中的高效张量管理","authors":"Haoran Zhou;Wei Rang;Hongyang Chen;Xiaobo Zhou;Dazhao Cheng","doi":"10.1109/TPDS.2024.3431910","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 11","pages":"1920-1935"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training\",\"authors\":\"Haoran Zhou;Wei Rang;Hongyang Chen;Xiaobo Zhou;Dazhao Cheng\",\"doi\":\"10.1109/TPDS.2024.3431910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 11\",\"pages\":\"1920-1935\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10606082/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606082/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
DeepTM: Efficient Tensor Management in Heterogeneous Memory for DNN Training
Deep Neural Networks (DNNs) have gained widespread adoption in diverse fields, including image classification, object detection, and natural language processing. However, training large-scale DNN models often encounters significant memory bottlenecks, which ask for efficient management of extensive tensors. Heterogeneous memory system, which combines persistent memory (PM) modules with traditional DRAM, offers an economically viable solution to address tensor management challenges during DNN training. However, existing memory management methods on heterogeneous memory systems often lead to low PM access efficiency, low bandwidth utilization, and incomplete analysis of model characteristics. To overcome these hurdles, we introduce an efficient tensor management approach, DeepTM, tailored for heterogeneous memory to alleviate memory bottlenecks during DNN training. DeepTM employs page-level tensor aggregation to enhance PM read and write performance and executes contiguous page migration to increase memory bandwidth. Through an analysis of tensor access patterns and model characteristics, we quantify the overall performance and transform the performance optimization problem into the framework of Integer Linear Programming. Additionally, we achieve tensor heat recognition by dynamically adjusting the weights of four key tensor characteristics and develop a global optimization strategy using Deep Reinforcement Learning. To validate the efficacy of our approach, we implement and evaluate DeepTM, utilizing the TensorFlow framework running on a PM-based heterogeneous memory system. The experimental results demonstrate that DeepTM achieves performance improvements of up to 36% and 49% compared to the current state-of-the-art memory management strategies AutoTM and Sentinel, respectively. Furthermore, our solution reduces the overhead by 18 times and achieves up to 29% cost reduction compared to AutoTM.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.