{"title":"利用分层流水线并行性进行无冗余和负载平衡的 TGNN 训练","authors":"Yaqi Xia;Zheng Zhang;Donglin Yang;Chuang Hu;Xiaobo Zhou;Hongyang Chen;Qianlong Sang;Dazhao Cheng","doi":"10.1109/TPDS.2024.3432855","DOIUrl":null,"url":null,"abstract":"Recently, Temporal Graph Neural Networks (TGNNs), as an extension of Graph Neural Networks, have demonstrated remarkable effectiveness in handling dynamic graph data. Distributed TGNN training requires efficiently tackling temporal dependency, which often leads to excessive cross-device communication that generates significant redundant data. However, existing systems are unable to remove the redundancy in data reuse and transfer, and suffer from severe communication overhead in a distributed setting. This work introduces Sven, a co-designed algorithm-system library aimed at accelerating TGNN training on a multi-GPU platform. Exploiting dependency patterns of TGNN models, we develop a redundancy-free graph organization to mitigate redundant data transfer. Additionally, we investigate communication imbalance issues among devices and formulate the graph partitioning problem as minimizing the maximum communication balance cost, which is proved to be an NP-hard problem. We propose an approximation algorithm called Re-FlexBiCut to tackle this problem. Furthermore, we incorporate prefetching, adaptive micro-batch pipelining, and asynchronous pipelining to present a hierarchical pipelining mechanism that mitigates the communication overhead. Sven represents the first comprehensive optimization solution for scaling memory-based TGNN training. Through extensive experiments conducted on a 64-GPU cluster, Sven demonstrates impressive speedup, ranging from 1.9x to 3.5x, compared to State-of-the-Art approaches. Additionally, Sven achieves up to 5.26x higher communication efficiency and reduces communication imbalance by up to 59.2%.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 11","pages":"1904-1919"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redundancy-Free and Load-Balanced TGNN Training With Hierarchical Pipeline Parallelism\",\"authors\":\"Yaqi Xia;Zheng Zhang;Donglin Yang;Chuang Hu;Xiaobo Zhou;Hongyang Chen;Qianlong Sang;Dazhao Cheng\",\"doi\":\"10.1109/TPDS.2024.3432855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Temporal Graph Neural Networks (TGNNs), as an extension of Graph Neural Networks, have demonstrated remarkable effectiveness in handling dynamic graph data. Distributed TGNN training requires efficiently tackling temporal dependency, which often leads to excessive cross-device communication that generates significant redundant data. However, existing systems are unable to remove the redundancy in data reuse and transfer, and suffer from severe communication overhead in a distributed setting. This work introduces Sven, a co-designed algorithm-system library aimed at accelerating TGNN training on a multi-GPU platform. Exploiting dependency patterns of TGNN models, we develop a redundancy-free graph organization to mitigate redundant data transfer. Additionally, we investigate communication imbalance issues among devices and formulate the graph partitioning problem as minimizing the maximum communication balance cost, which is proved to be an NP-hard problem. We propose an approximation algorithm called Re-FlexBiCut to tackle this problem. Furthermore, we incorporate prefetching, adaptive micro-batch pipelining, and asynchronous pipelining to present a hierarchical pipelining mechanism that mitigates the communication overhead. Sven represents the first comprehensive optimization solution for scaling memory-based TGNN training. Through extensive experiments conducted on a 64-GPU cluster, Sven demonstrates impressive speedup, ranging from 1.9x to 3.5x, compared to State-of-the-Art approaches. Additionally, Sven achieves up to 5.26x higher communication efficiency and reduces communication imbalance by up to 59.2%.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 11\",\"pages\":\"1904-1919\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10608434/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10608434/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Redundancy-Free and Load-Balanced TGNN Training With Hierarchical Pipeline Parallelism
Recently, Temporal Graph Neural Networks (TGNNs), as an extension of Graph Neural Networks, have demonstrated remarkable effectiveness in handling dynamic graph data. Distributed TGNN training requires efficiently tackling temporal dependency, which often leads to excessive cross-device communication that generates significant redundant data. However, existing systems are unable to remove the redundancy in data reuse and transfer, and suffer from severe communication overhead in a distributed setting. This work introduces Sven, a co-designed algorithm-system library aimed at accelerating TGNN training on a multi-GPU platform. Exploiting dependency patterns of TGNN models, we develop a redundancy-free graph organization to mitigate redundant data transfer. Additionally, we investigate communication imbalance issues among devices and formulate the graph partitioning problem as minimizing the maximum communication balance cost, which is proved to be an NP-hard problem. We propose an approximation algorithm called Re-FlexBiCut to tackle this problem. Furthermore, we incorporate prefetching, adaptive micro-batch pipelining, and asynchronous pipelining to present a hierarchical pipelining mechanism that mitigates the communication overhead. Sven represents the first comprehensive optimization solution for scaling memory-based TGNN training. Through extensive experiments conducted on a 64-GPU cluster, Sven demonstrates impressive speedup, ranging from 1.9x to 3.5x, compared to State-of-the-Art approaches. Additionally, Sven achieves up to 5.26x higher communication efficiency and reduces communication imbalance by up to 59.2%.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.