生理学上距离函数的集合收敛性和均匀收敛性

Yogesh Agarwal, Varun Jindal
{"title":"生理学上距离函数的集合收敛性和均匀收敛性","authors":"Yogesh Agarwal, Varun Jindal","doi":"arxiv-2407.16408","DOIUrl":null,"url":null,"abstract":"For a metric space $(X,d)$, Beer, Naimpally, and Rodriguez-Lopez in ([17])\nproposed a unified approach to explore set convergences via uniform convergence\nof distance functionals on members of an arbitrary family $\\mathcal{S}$ of\nsubsets of $X$. The associated topology on the collection $CL(X)$ of all\nnonempty closed subsets of $(X,d)$ is denoted by $\\tau_{\\mathcal{S},d}$. As\nspecial cases, this unified approach includes classical Wijsman, Attouch-Wets,\nand Hausdorff distance topologies. In this article, we investigate various\ntopological characteristics of the hyperspace $(CL(X), \\tau_{\\mathcal{S},d})$\nwhen $\\mathcal{S}$ is a bornology on $(X,d)$. In order to do this, a new class\nof bornologies and a new metric topology on $CL(X)$ have been introduced and\nstudied.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Set convergences and uniform convergence of distance functionals on a bornology\",\"authors\":\"Yogesh Agarwal, Varun Jindal\",\"doi\":\"arxiv-2407.16408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a metric space $(X,d)$, Beer, Naimpally, and Rodriguez-Lopez in ([17])\\nproposed a unified approach to explore set convergences via uniform convergence\\nof distance functionals on members of an arbitrary family $\\\\mathcal{S}$ of\\nsubsets of $X$. The associated topology on the collection $CL(X)$ of all\\nnonempty closed subsets of $(X,d)$ is denoted by $\\\\tau_{\\\\mathcal{S},d}$. As\\nspecial cases, this unified approach includes classical Wijsman, Attouch-Wets,\\nand Hausdorff distance topologies. In this article, we investigate various\\ntopological characteristics of the hyperspace $(CL(X), \\\\tau_{\\\\mathcal{S},d})$\\nwhen $\\\\mathcal{S}$ is a bornology on $(X,d)$. In order to do this, a new class\\nof bornologies and a new metric topology on $CL(X)$ have been introduced and\\nstudied.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于度量空间 $(X,d)$,Beer、Naimpally 和 Rodriguez-Lopez 在([17])中提出了一种统一的方法,通过距离函数对 $X$ 子集的任意族 $\mathcal{S}$ 成员的均匀收敛来探索集合收敛性。所有非空封闭子集 $(X,d)$ 的集合 $CL(X)$ 上的相关拓扑结构用 $\tau_{mathcal{S},d}$ 表示。作为特例,这种统一方法包括经典的韦斯曼拓扑、阿图奇-韦兹拓扑和豪斯多夫距离拓扑。在本文中,当 $\mathcal{S}$ 是$(X,d)$上的天生拓扑学时,我们将研究超空间$(CL(X), \tau_\{mathcal{S},d})$的各种拓扑学特征。为此,我们引入并研究了一类新的生扑学和一种新的关于 $CL(X)$ 的度量拓扑学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set convergences and uniform convergence of distance functionals on a bornology
For a metric space $(X,d)$, Beer, Naimpally, and Rodriguez-Lopez in ([17]) proposed a unified approach to explore set convergences via uniform convergence of distance functionals on members of an arbitrary family $\mathcal{S}$ of subsets of $X$. The associated topology on the collection $CL(X)$ of all nonempty closed subsets of $(X,d)$ is denoted by $\tau_{\mathcal{S},d}$. As special cases, this unified approach includes classical Wijsman, Attouch-Wets, and Hausdorff distance topologies. In this article, we investigate various topological characteristics of the hyperspace $(CL(X), \tau_{\mathcal{S},d})$ when $\mathcal{S}$ is a bornology on $(X,d)$. In order to do this, a new class of bornologies and a new metric topology on $CL(X)$ have been introduced and studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信