弧状连续体平面嵌入中可数集的可达性

Ana Anušić, Logan C. Hoehn
{"title":"弧状连续体平面嵌入中可数集的可达性","authors":"Ana Anušić, Logan C. Hoehn","doi":"arxiv-2407.16792","DOIUrl":null,"url":null,"abstract":"We consider the problem of finding embeddings of arc-like continua in the\nplane for which each point in a given subset is accessible. We establish that,\nunder certain conditions on an inverse system of arcs, there exists a plane\nembedding of the inverse limit for which each point of a given countable set is\naccessible. As an application, we show that for any Knaster continuum $K$, and\nany countable collection $\\mathcal{C}$ of composants of $K$, there exists a\nplane embedding of $K$ in which every point in the union of the composants in\n$\\mathcal{C}$ is accessible. We also exhibit new embeddings of the Knaster\nbuckethandle continuum $K$ in the plane which are attractors of plane\nhomeomorphisms, and for which the restriction of the plane homeomorphism to the\nattractor is conjugate to a power of the standard shift map on $K$.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accessibility of countable sets in plane embeddings of arc-like continua\",\"authors\":\"Ana Anušić, Logan C. Hoehn\",\"doi\":\"arxiv-2407.16792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of finding embeddings of arc-like continua in the\\nplane for which each point in a given subset is accessible. We establish that,\\nunder certain conditions on an inverse system of arcs, there exists a plane\\nembedding of the inverse limit for which each point of a given countable set is\\naccessible. As an application, we show that for any Knaster continuum $K$, and\\nany countable collection $\\\\mathcal{C}$ of composants of $K$, there exists a\\nplane embedding of $K$ in which every point in the union of the composants in\\n$\\\\mathcal{C}$ is accessible. We also exhibit new embeddings of the Knaster\\nbuckethandle continuum $K$ in the plane which are attractors of plane\\nhomeomorphisms, and for which the restriction of the plane homeomorphism to the\\nattractor is conjugate to a power of the standard shift map on $K$.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是在平面中寻找弧状连续体的嵌入,使给定子集中的每个点都是可访问的。我们确定,在弧的逆系统的某些条件下,存在一个逆极限的平面嵌入,对于它,给定可数集的每个点都是可访问的。作为一个应用,我们证明了对于任何克纳斯塔连续统 $K$ 和 $K$ 的可数集合 $\mathcal{C}$ ,都存在一个 $K$ 的平面嵌入,在这个嵌入中,$\mathcal{C}$ 的可数集合中的每一点都是可访问的。我们还展示了 Knasterbuckethandle 连续统 $K$ 在平面上的新嵌入,这些嵌入是平面同构的吸引子,对于这些嵌入,平面同构对attractor 的限制与 $K$ 上标准移位映射的幂共轭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accessibility of countable sets in plane embeddings of arc-like continua
We consider the problem of finding embeddings of arc-like continua in the plane for which each point in a given subset is accessible. We establish that, under certain conditions on an inverse system of arcs, there exists a plane embedding of the inverse limit for which each point of a given countable set is accessible. As an application, we show that for any Knaster continuum $K$, and any countable collection $\mathcal{C}$ of composants of $K$, there exists a plane embedding of $K$ in which every point in the union of the composants in $\mathcal{C}$ is accessible. We also exhibit new embeddings of the Knaster buckethandle continuum $K$ in the plane which are attractors of plane homeomorphisms, and for which the restriction of the plane homeomorphism to the attractor is conjugate to a power of the standard shift map on $K$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信