Ugo Bruzzo, Rodrigo Gondim, Rafael Holanda, William D. Montoya
{"title":"考克斯-哥伦布代数","authors":"Ugo Bruzzo, Rodrigo Gondim, Rafael Holanda, William D. Montoya","doi":"arxiv-2407.17811","DOIUrl":null,"url":null,"abstract":"This paper is a first step in the study of nonstandard graded algebras having\nPoincar\\'e duality and their Lefschetz properties. We prove the equivalence\nbetween the toric setup and the G-graded one, generalize Macaulay-Matlis\nduality, introduce Lefschetz properties and prove a Hessian criteria in the\nG-graded setup. We prove a special case of the Codimension One Conjecture of\nCattani-Cox-Dickenstein.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cox-Gorenstein algebras\",\"authors\":\"Ugo Bruzzo, Rodrigo Gondim, Rafael Holanda, William D. Montoya\",\"doi\":\"arxiv-2407.17811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is a first step in the study of nonstandard graded algebras having\\nPoincar\\\\'e duality and their Lefschetz properties. We prove the equivalence\\nbetween the toric setup and the G-graded one, generalize Macaulay-Matlis\\nduality, introduce Lefschetz properties and prove a Hessian criteria in the\\nG-graded setup. We prove a special case of the Codimension One Conjecture of\\nCattani-Cox-Dickenstein.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper is a first step in the study of nonstandard graded algebras having
Poincar\'e duality and their Lefschetz properties. We prove the equivalence
between the toric setup and the G-graded one, generalize Macaulay-Matlis
duality, introduce Lefschetz properties and prove a Hessian criteria in the
G-graded setup. We prove a special case of the Codimension One Conjecture of
Cattani-Cox-Dickenstein.