仿射半群提升的扬纳卡基斯型定理

João Gouveia, Amy Wiebe
{"title":"仿射半群提升的扬纳卡基斯型定理","authors":"João Gouveia, Amy Wiebe","doi":"arxiv-2407.14764","DOIUrl":null,"url":null,"abstract":"Yannakakis' theorem relating the extension complexity of a polytope to the\nsize of a nonnegative factorization of its slack matrix is a seminal result in\nthe study of lifts of convex sets. Inspired by this result and the importance\nof lifts in the setting of integer programming, we show that a similar result\nholds for the discrete analog of convex polyhedral cones-affine semigroups. We\ndefine the notions of the integer slack matrix and a lift of an affine\nsemigroup. We show that many of the characterizations of the slack matrix in\nthe convex cone setting have analogous results in the affine semigroup setting.\nWe also show how slack matrices of affine semigroups can be used to obtain new\nresults in the study of nonnegative integer rank of nonnegative integer\nmatrices.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Yannakakis-type theorem for lifts of affine semigroups\",\"authors\":\"João Gouveia, Amy Wiebe\",\"doi\":\"arxiv-2407.14764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yannakakis' theorem relating the extension complexity of a polytope to the\\nsize of a nonnegative factorization of its slack matrix is a seminal result in\\nthe study of lifts of convex sets. Inspired by this result and the importance\\nof lifts in the setting of integer programming, we show that a similar result\\nholds for the discrete analog of convex polyhedral cones-affine semigroups. We\\ndefine the notions of the integer slack matrix and a lift of an affine\\nsemigroup. We show that many of the characterizations of the slack matrix in\\nthe convex cone setting have analogous results in the affine semigroup setting.\\nWe also show how slack matrices of affine semigroups can be used to obtain new\\nresults in the study of nonnegative integer rank of nonnegative integer\\nmatrices.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Yannakakis 关于多面体的扩展复杂度与其松弛矩阵的非负因式分解的大小的定理是凸集提升研究的开创性成果。受这一结果以及提升在整数编程中的重要性的启发,我们证明了凸多面体锥体的离散类似物--咖啡因半群--也有类似的结果。我们定义了整数松弛矩阵和仿射半群提升的概念。我们还展示了仿射半群的松弛矩阵如何用于获得研究非负整数秩的非负整数矩阵的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Yannakakis-type theorem for lifts of affine semigroups
Yannakakis' theorem relating the extension complexity of a polytope to the size of a nonnegative factorization of its slack matrix is a seminal result in the study of lifts of convex sets. Inspired by this result and the importance of lifts in the setting of integer programming, we show that a similar result holds for the discrete analog of convex polyhedral cones-affine semigroups. We define the notions of the integer slack matrix and a lift of an affine semigroup. We show that many of the characterizations of the slack matrix in the convex cone setting have analogous results in the affine semigroup setting. We also show how slack matrices of affine semigroups can be used to obtain new results in the study of nonnegative integer rank of nonnegative integer matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信