域上多变量多项式环的倒数补集

Neil Epstein, Lorenzo Guerrieri, K. Alan Loper
{"title":"域上多变量多项式环的倒数补集","authors":"Neil Epstein, Lorenzo Guerrieri, K. Alan Loper","doi":"arxiv-2407.15637","DOIUrl":null,"url":null,"abstract":"The *reciprocal complement* $R(D)$ of an integral domain $D$ is the subring\nof its fraction field generated by the reciprocals of its nonzero elements.\nMany properties of $R(D)$ are determined when $D$ is a polynomial ring in\n$n\\geq 2$ variables over a field. In particular, $R(D)$ is an $n$-dimensional,\nlocal, non-Noetherian, non-integrally closed, non-factorial, atomic G-domain,\nwith infinitely many prime ideals at each height other than $0$ and $n$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The reciprocal complement of a polynomial ring in several variables over a field\",\"authors\":\"Neil Epstein, Lorenzo Guerrieri, K. Alan Loper\",\"doi\":\"arxiv-2407.15637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The *reciprocal complement* $R(D)$ of an integral domain $D$ is the subring\\nof its fraction field generated by the reciprocals of its nonzero elements.\\nMany properties of $R(D)$ are determined when $D$ is a polynomial ring in\\n$n\\\\geq 2$ variables over a field. In particular, $R(D)$ is an $n$-dimensional,\\nlocal, non-Noetherian, non-integrally closed, non-factorial, atomic G-domain,\\nwith infinitely many prime ideals at each height other than $0$ and $n$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个积分域$D$的*倒数补集* $R(D)$是由其非零元素的倒数生成的分数域的子环。当$D$是一个域上的$n\geq 2$变量的多项式环时,$R(D)$的许多性质就确定了。特别是,$R(D)$ 是一个 $n$ 维、局部、非诺特、非整封、非因子、原子 G 域,在每个高度上除了 $0$ 和 $n$ 之外都有无穷多个素理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The reciprocal complement of a polynomial ring in several variables over a field
The *reciprocal complement* $R(D)$ of an integral domain $D$ is the subring of its fraction field generated by the reciprocals of its nonzero elements. Many properties of $R(D)$ are determined when $D$ is a polynomial ring in $n\geq 2$ variables over a field. In particular, $R(D)$ is an $n$-dimensional, local, non-Noetherian, non-integrally closed, non-factorial, atomic G-domain, with infinitely many prime ideals at each height other than $0$ and $n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信