{"title":"最大科恩-麦考莱模块类别的谱","authors":"Naoya Hiramatsu","doi":"arxiv-2407.16913","DOIUrl":null,"url":null,"abstract":"We introduce an analog of the Ziegler spectrum for maximal Cohen-Macaulay\nmodules over a complete Cohen-Macaulay local ring. We define a topology on the\nspace of isomorphism classes of indecomposable maximal Cohen-Macaulay modules\nand investigate the topological structure. We also calculate the\nCantor-Bendixson rank for a ring which is of CM_+-finite representation type.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spectrum of a category of maximal Cohen-Macaulay modules\",\"authors\":\"Naoya Hiramatsu\",\"doi\":\"arxiv-2407.16913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an analog of the Ziegler spectrum for maximal Cohen-Macaulay\\nmodules over a complete Cohen-Macaulay local ring. We define a topology on the\\nspace of isomorphism classes of indecomposable maximal Cohen-Macaulay modules\\nand investigate the topological structure. We also calculate the\\nCantor-Bendixson rank for a ring which is of CM_+-finite representation type.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"162 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The spectrum of a category of maximal Cohen-Macaulay modules
We introduce an analog of the Ziegler spectrum for maximal Cohen-Macaulay
modules over a complete Cohen-Macaulay local ring. We define a topology on the
space of isomorphism classes of indecomposable maximal Cohen-Macaulay modules
and investigate the topological structure. We also calculate the
Cantor-Bendixson rank for a ring which is of CM_+-finite representation type.