{"title":"分级注入模块和维罗尼斯子模块的底数","authors":"Taylor Murray","doi":"arxiv-2407.17656","DOIUrl":null,"url":null,"abstract":"Let $R$ be a standard graded, finitely generated algebra over a field, and\nlet $M$ be a graded module over $R$ with all Bass numbers finite. Set\n$(-)^{(n)}$ to be the $n$-th Veronese functor. We compute the Bass numbers of\n$M^{(n)}$ over the ring $R^{(n)}$ for all prime ideals of $R^{(n)}$ that are\nnot the homogeneous maximal ideal in terms of the Bass numbers of $M$ over $R$.\nAs an application to local cohomology modules, we determine the Bass numbers of\n$H_{I\\cap R^{(n)}}^i(R^{(n)})$ over the ring $R^{(n)}$ in the case where\n$H_I^i(R)$ has finite Bass numbers over $R$ and $I$ is a graded ideal.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graded-Injective Modules and Bass Numbers of Veronese Submodules\",\"authors\":\"Taylor Murray\",\"doi\":\"arxiv-2407.17656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a standard graded, finitely generated algebra over a field, and\\nlet $M$ be a graded module over $R$ with all Bass numbers finite. Set\\n$(-)^{(n)}$ to be the $n$-th Veronese functor. We compute the Bass numbers of\\n$M^{(n)}$ over the ring $R^{(n)}$ for all prime ideals of $R^{(n)}$ that are\\nnot the homogeneous maximal ideal in terms of the Bass numbers of $M$ over $R$.\\nAs an application to local cohomology modules, we determine the Bass numbers of\\n$H_{I\\\\cap R^{(n)}}^i(R^{(n)})$ over the ring $R^{(n)}$ in the case where\\n$H_I^i(R)$ has finite Bass numbers over $R$ and $I$ is a graded ideal.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graded-Injective Modules and Bass Numbers of Veronese Submodules
Let $R$ be a standard graded, finitely generated algebra over a field, and
let $M$ be a graded module over $R$ with all Bass numbers finite. Set
$(-)^{(n)}$ to be the $n$-th Veronese functor. We compute the Bass numbers of
$M^{(n)}$ over the ring $R^{(n)}$ for all prime ideals of $R^{(n)}$ that are
not the homogeneous maximal ideal in terms of the Bass numbers of $M$ over $R$.
As an application to local cohomology modules, we determine the Bass numbers of
$H_{I\cap R^{(n)}}^i(R^{(n)})$ over the ring $R^{(n)}$ in the case where
$H_I^i(R)$ has finite Bass numbers over $R$ and $I$ is a graded ideal.