分级注入模块和维罗尼斯子模块的底数

Taylor Murray
{"title":"分级注入模块和维罗尼斯子模块的底数","authors":"Taylor Murray","doi":"arxiv-2407.17656","DOIUrl":null,"url":null,"abstract":"Let $R$ be a standard graded, finitely generated algebra over a field, and\nlet $M$ be a graded module over $R$ with all Bass numbers finite. Set\n$(-)^{(n)}$ to be the $n$-th Veronese functor. We compute the Bass numbers of\n$M^{(n)}$ over the ring $R^{(n)}$ for all prime ideals of $R^{(n)}$ that are\nnot the homogeneous maximal ideal in terms of the Bass numbers of $M$ over $R$.\nAs an application to local cohomology modules, we determine the Bass numbers of\n$H_{I\\cap R^{(n)}}^i(R^{(n)})$ over the ring $R^{(n)}$ in the case where\n$H_I^i(R)$ has finite Bass numbers over $R$ and $I$ is a graded ideal.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graded-Injective Modules and Bass Numbers of Veronese Submodules\",\"authors\":\"Taylor Murray\",\"doi\":\"arxiv-2407.17656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a standard graded, finitely generated algebra over a field, and\\nlet $M$ be a graded module over $R$ with all Bass numbers finite. Set\\n$(-)^{(n)}$ to be the $n$-th Veronese functor. We compute the Bass numbers of\\n$M^{(n)}$ over the ring $R^{(n)}$ for all prime ideals of $R^{(n)}$ that are\\nnot the homogeneous maximal ideal in terms of the Bass numbers of $M$ over $R$.\\nAs an application to local cohomology modules, we determine the Bass numbers of\\n$H_{I\\\\cap R^{(n)}}^i(R^{(n)})$ over the ring $R^{(n)}$ in the case where\\n$H_I^i(R)$ has finite Bass numbers over $R$ and $I$ is a graded ideal.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $R$ 是一个标准的有级、有限生成的域上代数,让 $M$ 是一个所有巴斯数都有限的 $R$ 上的有级模块。设$(-)^{(n)}$ 是$n$-th Veronese函子。我们计算环 $R^{(n)}$ 上的 $M^{(n)}$ 的 Bass 数,针对的是 R^{(n)}$ 中所有不是同质最大理想的素理想。作为局部同调模块的一个应用,我们确定了在$H_I^i(R)$ 在$R$ 上有有限底数且$I$ 是级数理想的情况下,$H_{I\cap R^{(n)}}^i(R^{(n)})$ 在环$R^{(n)}$ 上的底数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graded-Injective Modules and Bass Numbers of Veronese Submodules
Let $R$ be a standard graded, finitely generated algebra over a field, and let $M$ be a graded module over $R$ with all Bass numbers finite. Set $(-)^{(n)}$ to be the $n$-th Veronese functor. We compute the Bass numbers of $M^{(n)}$ over the ring $R^{(n)}$ for all prime ideals of $R^{(n)}$ that are not the homogeneous maximal ideal in terms of the Bass numbers of $M$ over $R$. As an application to local cohomology modules, we determine the Bass numbers of $H_{I\cap R^{(n)}}^i(R^{(n)})$ over the ring $R^{(n)}$ in the case where $H_I^i(R)$ has finite Bass numbers over $R$ and $I$ is a graded ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信