SNO+ Collaboration, :, A. Allega, M. R. Anderson, S. Andringa, M. Askins, D. J. Auty, A. Bacon, J. Baker, F. Barão, N. Barros, R. Bayes, E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, E. Caden, E. J. Callaghan, M. Chen, S. Cheng, B. Cleveland, D. Cookman, J. Corning, M. A. Cox, R. Dehghani, J. Deloye, M. M. Depatie, F. Di Lodovico, C. Dima, J. Dittmer, K. H. Dixon, M. S. Esmaeilian, E. Falk, N. Fatemighomi, R. Ford, A. Gaur, O. I. González-Reina, D. Gooding, C. Grant, J. Grove, S. Hall, A. L. Hallin, D. Hallman, W. J. Heintzelman, R. L. Helmer, C. Hewitt, V. Howard, B. Hreljac, J. Hu, P. Huang, R. Hunt-Stokes, S. M. A. Hussain, A. S. Inácio, C. J. Jillings, S. Kaluzienski, T. Kaptanoglu, H. Khan, J. Kladnik, J. R. Klein, L. L. Kormos, B. Krar, C. Kraus, C. B. Krauss, T. Kroupová, C. Lake, L. Lebanowski, C. Lefebvre, V. Lozza, M. Luo, A. Maio, S. Manecki, J. Maneira, R. D. Martin, N. McCauley, A. B. McDonald, G. Milton, A. Molina Colina, D. Morris, M. Mubasher, S. Naugle, L. J. Nolan, H. M. O'Keeffe, G. D. Orebi Gann, J. Page, K. Paleshi, W. Parker, J. Paton, S. J. M. Peeters, L. Pickard, B. Quenallata, P. Ravi, A. Reichold, S. Riccetto, J. Rose, R. Rosero, I. Semenec, J. Simms, P. Skensved, M. Smiley, J. Smith, R. Svoboda, B. Tam, J. Tseng, E. Vázquez-Jáuregui, J. G. C. Veinot, C. J. Virtue, M. Ward, J. J. Weigand, J. R. Wilson, J. D. Wilson, A. Wright, S. Yang, M. Yeh, Z. Ye, S. Yu, Y. Zhang, K. Zuber, A. Zummo
{"title":"利用全 SNO+ 水相测量 $^8$B 太阳中微子通量","authors":"SNO+ Collaboration, :, A. Allega, M. R. Anderson, S. Andringa, M. Askins, D. J. Auty, A. Bacon, J. Baker, F. Barão, N. Barros, R. Bayes, E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, E. Caden, E. J. Callaghan, M. Chen, S. Cheng, B. Cleveland, D. Cookman, J. Corning, M. A. Cox, R. Dehghani, J. Deloye, M. M. Depatie, F. Di Lodovico, C. Dima, J. Dittmer, K. H. Dixon, M. S. Esmaeilian, E. Falk, N. Fatemighomi, R. Ford, A. Gaur, O. I. González-Reina, D. Gooding, C. Grant, J. Grove, S. Hall, A. L. Hallin, D. Hallman, W. J. Heintzelman, R. L. Helmer, C. Hewitt, V. Howard, B. Hreljac, J. Hu, P. Huang, R. Hunt-Stokes, S. M. A. Hussain, A. S. Inácio, C. J. Jillings, S. Kaluzienski, T. Kaptanoglu, H. Khan, J. Kladnik, J. R. Klein, L. L. Kormos, B. Krar, C. Kraus, C. B. Krauss, T. Kroupová, C. Lake, L. Lebanowski, C. Lefebvre, V. Lozza, M. Luo, A. Maio, S. Manecki, J. Maneira, R. D. Martin, N. McCauley, A. B. McDonald, G. Milton, A. Molina Colina, D. Morris, M. Mubasher, S. Naugle, L. J. Nolan, H. M. O'Keeffe, G. D. Orebi Gann, J. Page, K. Paleshi, W. Parker, J. Paton, S. J. M. Peeters, L. Pickard, B. Quenallata, P. Ravi, A. Reichold, S. Riccetto, J. Rose, R. Rosero, I. Semenec, J. Simms, P. Skensved, M. Smiley, J. Smith, R. Svoboda, B. Tam, J. Tseng, E. Vázquez-Jáuregui, J. G. C. Veinot, C. J. Virtue, M. Ward, J. J. Weigand, J. R. Wilson, J. D. Wilson, A. Wright, S. Yang, M. Yeh, Z. Ye, S. Yu, Y. Zhang, K. Zuber, A. Zummo","doi":"arxiv-2407.17595","DOIUrl":null,"url":null,"abstract":"The SNO+ detector operated initially as a water Cherenkov detector. The\nimplementation of a sealed covergas system midway through water data taking\nresulted in a significant reduction in the activity of $^{222}$Rn daughters in\nthe detector and allowed the lowest background to the solar electron scattering\nsignal above 5 MeV achieved to date. This paper reports an updated SNO+ water\nphase $^8$B solar neutrino analysis with a total livetime of 282.4 days and an\nanalysis threshold of 3.5 MeV. The $^8$B solar neutrino flux is found to be\n$\\left(2.32^{+0.18}_{-0.17}\\text{(stat.)}^{+0.07}_{-0.05}\\text{(syst.)}\\right)\\times10^{6}$\ncm$^{-2}$s$^{-1}$ assuming no neutrino oscillations, or\n$\\left(5.36^{+0.41}_{-0.39}\\text{(stat.)}^{+0.17}_{-0.16}\\text{(syst.)}\n\\right)\\times10^{6}$ cm$^{-2}$s$^{-1}$ assuming standard neutrino oscillation\nparameters, in good agreement with both previous measurements and Standard\nSolar Model Calculations. The electron recoil spectrum is presented above 3.5\nMeV.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of the $^8$B Solar Neutrino Flux Using the Full SNO+ Water Phase\",\"authors\":\"SNO+ Collaboration, :, A. Allega, M. R. Anderson, S. Andringa, M. Askins, D. J. Auty, A. Bacon, J. Baker, F. Barão, N. Barros, R. Bayes, E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, E. Caden, E. J. Callaghan, M. Chen, S. Cheng, B. Cleveland, D. Cookman, J. Corning, M. A. Cox, R. Dehghani, J. Deloye, M. M. Depatie, F. Di Lodovico, C. Dima, J. Dittmer, K. H. Dixon, M. S. Esmaeilian, E. Falk, N. Fatemighomi, R. Ford, A. Gaur, O. I. González-Reina, D. Gooding, C. Grant, J. Grove, S. Hall, A. L. Hallin, D. Hallman, W. J. Heintzelman, R. L. Helmer, C. Hewitt, V. Howard, B. Hreljac, J. Hu, P. Huang, R. Hunt-Stokes, S. M. A. Hussain, A. S. Inácio, C. J. Jillings, S. Kaluzienski, T. Kaptanoglu, H. Khan, J. Kladnik, J. R. Klein, L. L. Kormos, B. Krar, C. Kraus, C. B. Krauss, T. Kroupová, C. Lake, L. Lebanowski, C. Lefebvre, V. Lozza, M. Luo, A. Maio, S. Manecki, J. Maneira, R. D. Martin, N. McCauley, A. B. McDonald, G. Milton, A. Molina Colina, D. Morris, M. Mubasher, S. Naugle, L. J. Nolan, H. M. O'Keeffe, G. D. Orebi Gann, J. Page, K. Paleshi, W. Parker, J. Paton, S. J. M. Peeters, L. Pickard, B. Quenallata, P. Ravi, A. Reichold, S. Riccetto, J. Rose, R. Rosero, I. Semenec, J. Simms, P. Skensved, M. Smiley, J. Smith, R. Svoboda, B. Tam, J. Tseng, E. Vázquez-Jáuregui, J. G. C. Veinot, C. J. Virtue, M. Ward, J. J. Weigand, J. R. Wilson, J. D. Wilson, A. Wright, S. Yang, M. Yeh, Z. Ye, S. Yu, Y. Zhang, K. Zuber, A. Zummo\",\"doi\":\"arxiv-2407.17595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SNO+ detector operated initially as a water Cherenkov detector. The\\nimplementation of a sealed covergas system midway through water data taking\\nresulted in a significant reduction in the activity of $^{222}$Rn daughters in\\nthe detector and allowed the lowest background to the solar electron scattering\\nsignal above 5 MeV achieved to date. This paper reports an updated SNO+ water\\nphase $^8$B solar neutrino analysis with a total livetime of 282.4 days and an\\nanalysis threshold of 3.5 MeV. The $^8$B solar neutrino flux is found to be\\n$\\\\left(2.32^{+0.18}_{-0.17}\\\\text{(stat.)}^{+0.07}_{-0.05}\\\\text{(syst.)}\\\\right)\\\\times10^{6}$\\ncm$^{-2}$s$^{-1}$ assuming no neutrino oscillations, or\\n$\\\\left(5.36^{+0.41}_{-0.39}\\\\text{(stat.)}^{+0.17}_{-0.16}\\\\text{(syst.)}\\n\\\\right)\\\\times10^{6}$ cm$^{-2}$s$^{-1}$ assuming standard neutrino oscillation\\nparameters, in good agreement with both previous measurements and Standard\\nSolar Model Calculations. The electron recoil spectrum is presented above 3.5\\nMeV.\",\"PeriodicalId\":501181,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurement of the $^8$B Solar Neutrino Flux Using the Full SNO+ Water Phase
The SNO+ detector operated initially as a water Cherenkov detector. The
implementation of a sealed covergas system midway through water data taking
resulted in a significant reduction in the activity of $^{222}$Rn daughters in
the detector and allowed the lowest background to the solar electron scattering
signal above 5 MeV achieved to date. This paper reports an updated SNO+ water
phase $^8$B solar neutrino analysis with a total livetime of 282.4 days and an
analysis threshold of 3.5 MeV. The $^8$B solar neutrino flux is found to be
$\left(2.32^{+0.18}_{-0.17}\text{(stat.)}^{+0.07}_{-0.05}\text{(syst.)}\right)\times10^{6}$
cm$^{-2}$s$^{-1}$ assuming no neutrino oscillations, or
$\left(5.36^{+0.41}_{-0.39}\text{(stat.)}^{+0.17}_{-0.16}\text{(syst.)}
\right)\times10^{6}$ cm$^{-2}$s$^{-1}$ assuming standard neutrino oscillation
parameters, in good agreement with both previous measurements and Standard
Solar Model Calculations. The electron recoil spectrum is presented above 3.5
MeV.