合成$infty$类之间的可扩函数

César Bardomiano-Martínez
{"title":"合成$infty$类之间的可扩函数","authors":"César Bardomiano-Martínez","doi":"arxiv-2407.18072","DOIUrl":null,"url":null,"abstract":"We study exponentiable functors in the context of synthetic\n$\\infty$-categories. We do this within the framework of simplicial Homotopy\nType Theory of Riehl and Shulman. Our main result characterizes exponentiable\nfunctors. In order to achieve this, we explore Segal type completions.\nMoreover, we verify that our result is semantically sound.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"350 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponentiable functors between synthetic $\\\\infty$-categories\",\"authors\":\"César Bardomiano-Martínez\",\"doi\":\"arxiv-2407.18072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study exponentiable functors in the context of synthetic\\n$\\\\infty$-categories. We do this within the framework of simplicial Homotopy\\nType Theory of Riehl and Shulman. Our main result characterizes exponentiable\\nfunctors. In order to achieve this, we explore Segal type completions.\\nMoreover, we verify that our result is semantically sound.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"350 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在合成元类(synthetic$\infty$-categories)的背景下研究可指数函数。我们是在里尔(Riehl)和舒尔曼(Shulman)的同调类型理论(simplicial HomotopyType Theory)的框架内进行研究的。我们的主要结果描述了可指数函数的特征。此外,我们还验证了我们的结果在语义上是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponentiable functors between synthetic $\infty$-categories
We study exponentiable functors in the context of synthetic $\infty$-categories. We do this within the framework of simplicial Homotopy Type Theory of Riehl and Shulman. Our main result characterizes exponentiable functors. In order to achieve this, we explore Segal type completions. Moreover, we verify that our result is semantically sound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信