用深度差分网络校准赫斯顿模型

Chen Zhang, Giovanni Amici, Marco Morandotti
{"title":"用深度差分网络校准赫斯顿模型","authors":"Chen Zhang, Giovanni Amici, Marco Morandotti","doi":"arxiv-2407.15536","DOIUrl":null,"url":null,"abstract":"We propose a gradient-based deep learning framework to calibrate the Heston\noption pricing model (Heston, 1993). Our neural network, henceforth deep\ndifferential network (DDN), learns both the Heston pricing formula for\nplain-vanilla options and the partial derivatives with respect to the model\nparameters. The price sensitivities estimated by the DDN are not subject to the\nnumerical issues that can be encountered in computing the gradient of the\nHeston pricing function. Thus, our network is an excellent pricing engine for\nfast gradient-based calibrations. Extensive tests on selected equity markets\nshow that the DDN significantly outperforms non-differential feedforward neural\nnetworks in terms of calibration accuracy. In addition, it dramatically reduces\nthe computational time with respect to global optimizers that do not use\ngradient information.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrating the Heston Model with Deep Differential Networks\",\"authors\":\"Chen Zhang, Giovanni Amici, Marco Morandotti\",\"doi\":\"arxiv-2407.15536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a gradient-based deep learning framework to calibrate the Heston\\noption pricing model (Heston, 1993). Our neural network, henceforth deep\\ndifferential network (DDN), learns both the Heston pricing formula for\\nplain-vanilla options and the partial derivatives with respect to the model\\nparameters. The price sensitivities estimated by the DDN are not subject to the\\nnumerical issues that can be encountered in computing the gradient of the\\nHeston pricing function. Thus, our network is an excellent pricing engine for\\nfast gradient-based calibrations. Extensive tests on selected equity markets\\nshow that the DDN significantly outperforms non-differential feedforward neural\\nnetworks in terms of calibration accuracy. In addition, it dramatically reduces\\nthe computational time with respect to global optimizers that do not use\\ngradient information.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于梯度的深度学习框架来校准海斯顿期权定价模型(海斯顿,1993 年)。我们的神经网络(以下简称为深度微分网络(DDN))既能学习普通香草期权的海斯顿定价公式,也能学习模型参数的部分导数。DDN 估算的价格敏感性不受计算海斯顿定价函数梯度时可能遇到的数值问题的影响。因此,我们的网络是基于梯度校准的快速定价引擎。对选定股票市场的广泛测试表明,DDN 在校准精度方面明显优于非差分前馈神经网络。此外,与不使用梯度信息的全局优化器相比,它还大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrating the Heston Model with Deep Differential Networks
We propose a gradient-based deep learning framework to calibrate the Heston option pricing model (Heston, 1993). Our neural network, henceforth deep differential network (DDN), learns both the Heston pricing formula for plain-vanilla options and the partial derivatives with respect to the model parameters. The price sensitivities estimated by the DDN are not subject to the numerical issues that can be encountered in computing the gradient of the Heston pricing function. Thus, our network is an excellent pricing engine for fast gradient-based calibrations. Extensive tests on selected equity markets show that the DDN significantly outperforms non-differential feedforward neural networks in terms of calibration accuracy. In addition, it dramatically reduces the computational time with respect to global optimizers that do not use gradient information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信