用于自适应裂纹元素法的简单线性和非线性混合插值有限元

Xueya Wang, Yiming Zhang, Minjie Wen, Herbert Mang
{"title":"用于自适应裂纹元素法的简单线性和非线性混合插值有限元","authors":"Xueya Wang, Yiming Zhang, Minjie Wen, Herbert Mang","doi":"arxiv-2407.17104","DOIUrl":null,"url":null,"abstract":"Cracking Elements Method (CEM) is a numerical tool to simulate quasi-brittle\nfractures, which does not need remeshing, nodal enrichment, or complicated\ncrack tracking strategy. The cracking elements used in the CEM can be\nconsidered as a special type of finite element implemented in the standard\nfinite element frameworks. One disadvantage of CEM is that it uses nonlinear\ninterpolation of the displacement field (Q8 or T6 elements), introducing more\nnodes and consequent computing efforts than the cases with elements using\nlinear interpolation of the displacement field. Aiming at solving this problem,\nwe propose a simple hybrid linear and non-linear interpolation finite element\nfor adaptive cracking elements method in this work. A simple strategy is\nproposed for treating the elements with $p$ edge nodes $p\\in\\left[0,n\\right]$\nand $n$ being the edge number of the element. Only a few codes are needed.\nThen, by only adding edge and center nodes on the elements experiencing\ncracking and keeping linear interpolation of the displacement field for the\nelements outside the cracking domain, the number of total nodes was reduced\nalmost to half of the case using the conventional cracking elements. Numerical\ninvestigations prove that the new approach inherits all the advantages of CEM\nwith greatly improved computing efficiency.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple hybrid linear and non-linear interpolation finite element for adaptive cracking elements method\",\"authors\":\"Xueya Wang, Yiming Zhang, Minjie Wen, Herbert Mang\",\"doi\":\"arxiv-2407.17104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cracking Elements Method (CEM) is a numerical tool to simulate quasi-brittle\\nfractures, which does not need remeshing, nodal enrichment, or complicated\\ncrack tracking strategy. The cracking elements used in the CEM can be\\nconsidered as a special type of finite element implemented in the standard\\nfinite element frameworks. One disadvantage of CEM is that it uses nonlinear\\ninterpolation of the displacement field (Q8 or T6 elements), introducing more\\nnodes and consequent computing efforts than the cases with elements using\\nlinear interpolation of the displacement field. Aiming at solving this problem,\\nwe propose a simple hybrid linear and non-linear interpolation finite element\\nfor adaptive cracking elements method in this work. A simple strategy is\\nproposed for treating the elements with $p$ edge nodes $p\\\\in\\\\left[0,n\\\\right]$\\nand $n$ being the edge number of the element. Only a few codes are needed.\\nThen, by only adding edge and center nodes on the elements experiencing\\ncracking and keeping linear interpolation of the displacement field for the\\nelements outside the cracking domain, the number of total nodes was reduced\\nalmost to half of the case using the conventional cracking elements. Numerical\\ninvestigations prove that the new approach inherits all the advantages of CEM\\nwith greatly improved computing efficiency.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

裂纹元素法(CEM)是一种模拟准脆性断裂的数值工具,它不需要重网格、节点富集或复杂的裂纹跟踪策略。CEM 中使用的开裂元素可视为在标准有限元框架中实现的一种特殊有限元。CEM 的一个缺点是它使用位移场的非线性插值(Q8 或 T6 元素),与使用位移场线性插值元素的情况相比,引入了更多的节点和相应的计算工作量。为了解决这个问题,我们在本研究中提出了一种简单的线性和非线性混合插值有限元自适应开裂元素方法。我们提出了一种简单的策略来处理具有 $p$ 边缘节点 $p\in/left[0,n\right]$和 $n$ 为元素边缘数的元素。然后,只在发生开裂的元素上添加边缘节点和中心节点,并保持开裂域外元素位移场的线性插值,总节点数几乎减少到使用传统开裂元素情况的一半。数值研究证明,新方法继承了 CEM 的所有优点,并大大提高了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple hybrid linear and non-linear interpolation finite element for adaptive cracking elements method
Cracking Elements Method (CEM) is a numerical tool to simulate quasi-brittle fractures, which does not need remeshing, nodal enrichment, or complicated crack tracking strategy. The cracking elements used in the CEM can be considered as a special type of finite element implemented in the standard finite element frameworks. One disadvantage of CEM is that it uses nonlinear interpolation of the displacement field (Q8 or T6 elements), introducing more nodes and consequent computing efforts than the cases with elements using linear interpolation of the displacement field. Aiming at solving this problem, we propose a simple hybrid linear and non-linear interpolation finite element for adaptive cracking elements method in this work. A simple strategy is proposed for treating the elements with $p$ edge nodes $p\in\left[0,n\right]$ and $n$ being the edge number of the element. Only a few codes are needed. Then, by only adding edge and center nodes on the elements experiencing cracking and keeping linear interpolation of the displacement field for the elements outside the cracking domain, the number of total nodes was reduced almost to half of the case using the conventional cracking elements. Numerical investigations prove that the new approach inherits all the advantages of CEM with greatly improved computing efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信