{"title":"艾伦伯格-摩尔单子范畴上的微分扭转理论","authors":"Divya Ahuja, Surjeet Kour","doi":"arxiv-2407.16782","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal C$ be a Grothendieck category and $U$ be a monad on $\\mathcal\nC$ that is exact and preserves colimits. In this article, we prove that every\nhereditary torsion theory on the Eilenberg-Moore category $EM_U$ of modules\nover a monad $U$ is differential. Further, if $\\delta:U\\longrightarrow U$\ndenotes a derivation on a monad $U$, then we show that every\n$\\delta$-derivation on a $U$-module $M$ extends uniquely to a\n$\\delta$-derivation on the module of quotients of $M$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential torsion theories on Eilenberg-Moore categories of monads\",\"authors\":\"Divya Ahuja, Surjeet Kour\",\"doi\":\"arxiv-2407.16782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal C$ be a Grothendieck category and $U$ be a monad on $\\\\mathcal\\nC$ that is exact and preserves colimits. In this article, we prove that every\\nhereditary torsion theory on the Eilenberg-Moore category $EM_U$ of modules\\nover a monad $U$ is differential. Further, if $\\\\delta:U\\\\longrightarrow U$\\ndenotes a derivation on a monad $U$, then we show that every\\n$\\\\delta$-derivation on a $U$-module $M$ extends uniquely to a\\n$\\\\delta$-derivation on the module of quotients of $M$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential torsion theories on Eilenberg-Moore categories of monads
Let $\mathcal C$ be a Grothendieck category and $U$ be a monad on $\mathcal
C$ that is exact and preserves colimits. In this article, we prove that every
hereditary torsion theory on the Eilenberg-Moore category $EM_U$ of modules
over a monad $U$ is differential. Further, if $\delta:U\longrightarrow U$
denotes a derivation on a monad $U$, then we show that every
$\delta$-derivation on a $U$-module $M$ extends uniquely to a
$\delta$-derivation on the module of quotients of $M$.