第一个劳维尔问题的解答 一个格罗内迪克拓扑有许多商拓扑的适当类别

Yuhi Kamio, Ryuya Hora
{"title":"第一个劳维尔问题的解答 一个格罗内迪克拓扑有许多商拓扑的适当类别","authors":"Yuhi Kamio, Ryuya Hora","doi":"arxiv-2407.17105","DOIUrl":null,"url":null,"abstract":"This paper solves the first problem of the open problems in topos theory\nposted by William Lawvere, which asks the existence of a Grothendieck topos\nthat has a proper class many quotient topoi. This paper concretely constructs\nsuch Grothendieck topoi, including the presheaf topos of the free monoid\ngenerated by countably infinite elements $\\mathbf{PSh}(M_\\omega)$. Utilizing\nthe combinatorics of the classifying topos of the theory of inhabited objects\nand considering pairing functions, the problem is reduced to making rigid\nrelational structures. This is accomplished by using Kunen's theorem on\nelementary embeddings in set theory.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A solution to the first Lawvere's problem A Grothendieck topos that has a proper class many quotient topoi\",\"authors\":\"Yuhi Kamio, Ryuya Hora\",\"doi\":\"arxiv-2407.17105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper solves the first problem of the open problems in topos theory\\nposted by William Lawvere, which asks the existence of a Grothendieck topos\\nthat has a proper class many quotient topoi. This paper concretely constructs\\nsuch Grothendieck topoi, including the presheaf topos of the free monoid\\ngenerated by countably infinite elements $\\\\mathbf{PSh}(M_\\\\omega)$. Utilizing\\nthe combinatorics of the classifying topos of the theory of inhabited objects\\nand considering pairing functions, the problem is reduced to making rigid\\nrelational structures. This is accomplished by using Kunen's theorem on\\nelementary embeddings in set theory.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了威廉-劳维尔(William Lawvere)提出的拓扑理论开放问题中的第一个问题,即是否存在一个具有许多商拓扑的格罗内狄克拓扑。本文具体地构造了这样的格罗内狄克拓扑,包括由可数无限元素$mathbf{PSh}(M_\omega)$产生的自由单元的预叶拓扑。利用居住对象理论的分类拓扑的组合学,并考虑配对函数,问题被简化为建立刚性关系结构。这是通过使用集合论中的库嫩一元嵌入定理来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A solution to the first Lawvere's problem A Grothendieck topos that has a proper class many quotient topoi
This paper solves the first problem of the open problems in topos theory posted by William Lawvere, which asks the existence of a Grothendieck topos that has a proper class many quotient topoi. This paper concretely constructs such Grothendieck topoi, including the presheaf topos of the free monoid generated by countably infinite elements $\mathbf{PSh}(M_\omega)$. Utilizing the combinatorics of the classifying topos of the theory of inhabited objects and considering pairing functions, the problem is reduced to making rigid relational structures. This is accomplished by using Kunen's theorem on elementary embeddings in set theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信