具有最小差异的德布鲁因序列

Nicolás Álvarez, Verónica Becher, Martín Mereb, Ivo Pajor, Carlos Miguel Soto
{"title":"具有最小差异的德布鲁因序列","authors":"Nicolás Álvarez, Verónica Becher, Martín Mereb, Ivo Pajor, Carlos Miguel Soto","doi":"arxiv-2407.17367","DOIUrl":null,"url":null,"abstract":"The discrepancy of a binary string is the maximum (absolute) difference\nbetween the number of ones and the number of zeroes over all possible\nsubstrings of the given binary string. In this note we determine the minimal\ndiscrepancy that a binary de Bruijn sequence of order $n$ can achieve, which is\n$n$. This was an open problem until now. We give an algorithm that constructs a\nbinary de Bruijn sequence with minimal discrepancy. A slight modification of\nthis algorithm deals with arbitrary alphabets and yields de Bruijn sequences of\norder $n$ with discrepancy at most $1$ above the trivial lower bound $n$.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De Bruijn Sequences with Minimum Discrepancy\",\"authors\":\"Nicolás Álvarez, Verónica Becher, Martín Mereb, Ivo Pajor, Carlos Miguel Soto\",\"doi\":\"arxiv-2407.17367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discrepancy of a binary string is the maximum (absolute) difference\\nbetween the number of ones and the number of zeroes over all possible\\nsubstrings of the given binary string. In this note we determine the minimal\\ndiscrepancy that a binary de Bruijn sequence of order $n$ can achieve, which is\\n$n$. This was an open problem until now. We give an algorithm that constructs a\\nbinary de Bruijn sequence with minimal discrepancy. A slight modification of\\nthis algorithm deals with arbitrary alphabets and yields de Bruijn sequences of\\norder $n$ with discrepancy at most $1$ above the trivial lower bound $n$.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二进制字符串的差异是给定二进制字符串的所有可能子串中,1 的个数与 0 的个数之间的最大(绝对)差值。在本说明中,我们确定了阶数为 $n$ 的二进制德布鲁因序列所能达到的最小差异,即为 $n$。在此之前,这是一个悬而未决的问题。我们给出了一种算法,它能构造出具有最小差异的二进制 de Bruijn 序列。对这一算法稍加修改,就能处理任意字母,并得到阶为 $n$ 的德布鲁伊序列,其差异最多比微不足道的下限 $n$ 高 $1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De Bruijn Sequences with Minimum Discrepancy
The discrepancy of a binary string is the maximum (absolute) difference between the number of ones and the number of zeroes over all possible substrings of the given binary string. In this note we determine the minimal discrepancy that a binary de Bruijn sequence of order $n$ can achieve, which is $n$. This was an open problem until now. We give an algorithm that constructs a binary de Bruijn sequence with minimal discrepancy. A slight modification of this algorithm deals with arbitrary alphabets and yields de Bruijn sequences of order $n$ with discrepancy at most $1$ above the trivial lower bound $n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信