{"title":"调整聚二甲基硅氧烷弹性体的分子结构和机电特性以提高能量转换效率","authors":"Om Prakash Prabhakar, Raj Kumar Sahu","doi":"10.1002/pen.26886","DOIUrl":null,"url":null,"abstract":"<jats:label/>The molecular structure of dielectric elastomers dictates their mechanical, electrical, and properties to react under external stimuli, influencing their suitability for applications such as actuators, sensors, and energy harvesting devices. The molecular structure of polymers can be tailored by incorporating plasticizers and particulate fillers to achieve multifunctional properties. However, achieving a balance between flexibility and maintaining mechanical strength due to incorporation of fillers induced phase separation and compromised intermolecular interactions remains challenging. In the present work, polydimethylsiloxane (PDMS) composites are synthesized using plasticizer and particulate fillers, polyethylene glycol (H‐(OCH<jats:sub>2</jats:sub>CH<jats:sub>2</jats:sub>)<jats:sub>n</jats:sub>OH) and titanium diboride (TiB<jats:sub>2</jats:sub>) respectively in various concentrations using shear mixing and doctor blade casting technique. Molecular structure of synthesized PDMS composite is confirmed by observing peaks of Raman spectra sift, which exhibits robust CO bonds dominating for both fillers. Chain entanglement due to filler incorporation significantly affects the crosslink density of PDMS composite, it increases with the concentration of plasticizer and possesses inverse relation for particulate. Furthermore, interdependence of the filler types and concentration are found on the mechanical as well as electrical properties. The specific deformation energy exhibits a significant increase of 118.9% when comparing particulate to the plasticizer at concentration of 8 wt.%. Although plasticizer increases the actuation strain and energy conversion efficiency but decreases the electrical breakdown voltage in comparison to particulate. By systematically varying fillers concentration, subtle changes in multifunctional properties are achieved. Overall, this investigation provides a framework for tailoring dielectric elastomer composites with desired electromechanical characteristics through the amalgamation of filler types and crosslinking densities, all intricately tied to the molecular architecture for electromechanical sensors.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Filler incorporation changes DE molecular structure and materials properties.</jats:list-item> <jats:list-item>Formation of additional bonds and micro‐capacitors in DE enhances capacitance.</jats:list-item> <jats:list-item>Actuation strain in DE depends on filler type and concentration.</jats:list-item> <jats:list-item>Energy conversion efficiency varies with the concentration of filler.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"304 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring molecular structure and electromechanical properties of polydimethylsiloxane elastomer for enhanced energy conversion efficiency\",\"authors\":\"Om Prakash Prabhakar, Raj Kumar Sahu\",\"doi\":\"10.1002/pen.26886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>The molecular structure of dielectric elastomers dictates their mechanical, electrical, and properties to react under external stimuli, influencing their suitability for applications such as actuators, sensors, and energy harvesting devices. The molecular structure of polymers can be tailored by incorporating plasticizers and particulate fillers to achieve multifunctional properties. However, achieving a balance between flexibility and maintaining mechanical strength due to incorporation of fillers induced phase separation and compromised intermolecular interactions remains challenging. In the present work, polydimethylsiloxane (PDMS) composites are synthesized using plasticizer and particulate fillers, polyethylene glycol (H‐(OCH<jats:sub>2</jats:sub>CH<jats:sub>2</jats:sub>)<jats:sub>n</jats:sub>OH) and titanium diboride (TiB<jats:sub>2</jats:sub>) respectively in various concentrations using shear mixing and doctor blade casting technique. Molecular structure of synthesized PDMS composite is confirmed by observing peaks of Raman spectra sift, which exhibits robust CO bonds dominating for both fillers. Chain entanglement due to filler incorporation significantly affects the crosslink density of PDMS composite, it increases with the concentration of plasticizer and possesses inverse relation for particulate. Furthermore, interdependence of the filler types and concentration are found on the mechanical as well as electrical properties. The specific deformation energy exhibits a significant increase of 118.9% when comparing particulate to the plasticizer at concentration of 8 wt.%. Although plasticizer increases the actuation strain and energy conversion efficiency but decreases the electrical breakdown voltage in comparison to particulate. By systematically varying fillers concentration, subtle changes in multifunctional properties are achieved. Overall, this investigation provides a framework for tailoring dielectric elastomer composites with desired electromechanical characteristics through the amalgamation of filler types and crosslinking densities, all intricately tied to the molecular architecture for electromechanical sensors.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Filler incorporation changes DE molecular structure and materials properties.</jats:list-item> <jats:list-item>Formation of additional bonds and micro‐capacitors in DE enhances capacitance.</jats:list-item> <jats:list-item>Actuation strain in DE depends on filler type and concentration.</jats:list-item> <jats:list-item>Energy conversion efficiency varies with the concentration of filler.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"304 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26886\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26886","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Tailoring molecular structure and electromechanical properties of polydimethylsiloxane elastomer for enhanced energy conversion efficiency
The molecular structure of dielectric elastomers dictates their mechanical, electrical, and properties to react under external stimuli, influencing their suitability for applications such as actuators, sensors, and energy harvesting devices. The molecular structure of polymers can be tailored by incorporating plasticizers and particulate fillers to achieve multifunctional properties. However, achieving a balance between flexibility and maintaining mechanical strength due to incorporation of fillers induced phase separation and compromised intermolecular interactions remains challenging. In the present work, polydimethylsiloxane (PDMS) composites are synthesized using plasticizer and particulate fillers, polyethylene glycol (H‐(OCH2CH2)nOH) and titanium diboride (TiB2) respectively in various concentrations using shear mixing and doctor blade casting technique. Molecular structure of synthesized PDMS composite is confirmed by observing peaks of Raman spectra sift, which exhibits robust CO bonds dominating for both fillers. Chain entanglement due to filler incorporation significantly affects the crosslink density of PDMS composite, it increases with the concentration of plasticizer and possesses inverse relation for particulate. Furthermore, interdependence of the filler types and concentration are found on the mechanical as well as electrical properties. The specific deformation energy exhibits a significant increase of 118.9% when comparing particulate to the plasticizer at concentration of 8 wt.%. Although plasticizer increases the actuation strain and energy conversion efficiency but decreases the electrical breakdown voltage in comparison to particulate. By systematically varying fillers concentration, subtle changes in multifunctional properties are achieved. Overall, this investigation provides a framework for tailoring dielectric elastomer composites with desired electromechanical characteristics through the amalgamation of filler types and crosslinking densities, all intricately tied to the molecular architecture for electromechanical sensors.HighlightsFiller incorporation changes DE molecular structure and materials properties.Formation of additional bonds and micro‐capacitors in DE enhances capacitance.Actuation strain in DE depends on filler type and concentration.Energy conversion efficiency varies with the concentration of filler.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.