[数学]中[数学]框架势最小值的相变

IF 0.9 3区 数学 Q2 MATHEMATICS
Radel Ben-Av, Xuemei Chen, Assaf Goldberger, Shujie Kang, Kasso A. Okoudjou
{"title":"[数学]中[数学]框架势最小值的相变","authors":"Radel Ben-Av, Xuemei Chen, Assaf Goldberger, Shujie Kang, Kasso A. Okoudjou","doi":"10.1137/22m1539915","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2243-2259, September 2024. <br/> Abstract. Given [math] points [math] on the unit circle in [math] and a number [math], we investigate the minimizers of the functional [math]. While it is known that each of these minimizers is a spanning set for [math], less is known about their number as a function of [math] and [math] especially for relatively small [math]. In this paper we show that there is unique minimum for this functional for all [math] and all odd [math]. In addition, we present some numerical results suggesting the emergence of a phase transition phenomenon for these minimizers. More specifically, for [math] odd, there exists a sequence of points [math] so that a unique (up to some isometries) minimizer exists on each of the subintervals [math].","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Transitions for the Minimizers of the [math]-Frame Potentials in [math]\",\"authors\":\"Radel Ben-Av, Xuemei Chen, Assaf Goldberger, Shujie Kang, Kasso A. Okoudjou\",\"doi\":\"10.1137/22m1539915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2243-2259, September 2024. <br/> Abstract. Given [math] points [math] on the unit circle in [math] and a number [math], we investigate the minimizers of the functional [math]. While it is known that each of these minimizers is a spanning set for [math], less is known about their number as a function of [math] and [math] especially for relatively small [math]. In this paper we show that there is unique minimum for this functional for all [math] and all odd [math]. In addition, we present some numerical results suggesting the emergence of a phase transition phenomenon for these minimizers. More specifically, for [math] odd, there exists a sequence of points [math] so that a unique (up to some isometries) minimizer exists on each of the subintervals [math].\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1539915\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1539915","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷第 3 期,第 2243-2259 页,2024 年 9 月。 摘要。给定[math]中单位圆上的[math]点[math]和一个数[math],我们研究函数[math]的最小值。虽然我们知道这些最小化子中的每一个都是[math]的跨集,但对于它们的数量与[math]和[math]的函数关系却知之甚少,尤其是对于相对较小的[math]。在本文中,我们证明了对于所有[math]和所有奇数[math],这个函数都有唯一的最小值。此外,我们还提出了一些数值结果,表明这些最小值出现了相变现象。更具体地说,对于奇数[math],存在一个点序列[math],因此在每个子区间[math]上都存在一个唯一的(直到某些等距)最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase Transitions for the Minimizers of the [math]-Frame Potentials in [math]
SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2243-2259, September 2024.
Abstract. Given [math] points [math] on the unit circle in [math] and a number [math], we investigate the minimizers of the functional [math]. While it is known that each of these minimizers is a spanning set for [math], less is known about their number as a function of [math] and [math] especially for relatively small [math]. In this paper we show that there is unique minimum for this functional for all [math] and all odd [math]. In addition, we present some numerical results suggesting the emergence of a phase transition phenomenon for these minimizers. More specifically, for [math] odd, there exists a sequence of points [math] so that a unique (up to some isometries) minimizer exists on each of the subintervals [math].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信