从残差理论的角度研究博文积分的方法

Daniel Cao Labora, Gonzalo Cao Labora
{"title":"从残差理论的角度研究博文积分的方法","authors":"Daniel Cao Labora, Gonzalo Cao Labora","doi":"arxiv-2407.15856","DOIUrl":null,"url":null,"abstract":"Borwein integrals are one of the most popularly known phenomena in\ncontemporary mathematics. They were found in 2001 by David Borwein and Jonathan\nBorwein and consist of a simple family of integrals involving the cardinal sine\nfunction ``sinc'', so that the first integrals are equal to $\\pi$ until,\nsuddenly, that pattern breaks. The classical explanation for this fact involves\nFourier Analysis techniques. In this paper, we show that it is possible to\nderive an explanation for this result by means of undergraduate Complex\nAnalysis tools; namely, residue theory. Besides, we show that this Complex\nAnalysis scope allows to go a beyond the classical result when studying these\nkind of integrals. Concretely, we show a new generalization for the classical\nBorwein result.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to Borwein integrals from the point of view of residue theory\",\"authors\":\"Daniel Cao Labora, Gonzalo Cao Labora\",\"doi\":\"arxiv-2407.15856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Borwein integrals are one of the most popularly known phenomena in\\ncontemporary mathematics. They were found in 2001 by David Borwein and Jonathan\\nBorwein and consist of a simple family of integrals involving the cardinal sine\\nfunction ``sinc'', so that the first integrals are equal to $\\\\pi$ until,\\nsuddenly, that pattern breaks. The classical explanation for this fact involves\\nFourier Analysis techniques. In this paper, we show that it is possible to\\nderive an explanation for this result by means of undergraduate Complex\\nAnalysis tools; namely, residue theory. Besides, we show that this Complex\\nAnalysis scope allows to go a beyond the classical result when studying these\\nkind of integrals. Concretely, we show a new generalization for the classical\\nBorwein result.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

博文积分是当代数学中最广为人知的现象之一。它们由戴维-博尔文(David Borwein)和乔纳森-博尔文(JonathanBorwein)于 2001 年发现,由涉及心形正弦函数 ``sinc''的简单积分族组成,因此第一个积分等于 $\pi$,直到这种模式突然被打破。对这一事实的经典解释涉及傅里叶分析技术。在本文中,我们证明可以通过本科生的复分析工具,即残差理论来解释这一结果。此外,我们还证明,在研究这类积分时,这种复分析范围可以超越经典结果。具体地说,我们展示了经典博文结果的新概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to Borwein integrals from the point of view of residue theory
Borwein integrals are one of the most popularly known phenomena in contemporary mathematics. They were found in 2001 by David Borwein and Jonathan Borwein and consist of a simple family of integrals involving the cardinal sine function ``sinc'', so that the first integrals are equal to $\pi$ until, suddenly, that pattern breaks. The classical explanation for this fact involves Fourier Analysis techniques. In this paper, we show that it is possible to derive an explanation for this result by means of undergraduate Complex Analysis tools; namely, residue theory. Besides, we show that this Complex Analysis scope allows to go a beyond the classical result when studying these kind of integrals. Concretely, we show a new generalization for the classical Borwein result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信