测量小型海平面大范围气流中的退相干性

IF 2.5 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Universe Pub Date : 2024-07-25 DOI:10.3390/universe10080308
Roger Clay
{"title":"测量小型海平面大范围气流中的退相干性","authors":"Roger Clay","doi":"10.3390/universe10080308","DOIUrl":null,"url":null,"abstract":"A study is made of the progressive ‘decoherence’ of cosmic ray extensive air-shower particle-detector signals in small air showers through measurements of coincidence rates for pairs of detectors versus the detector separation. Measurements are made both when only the two separated detectors themselves trigger in coincidence, and when that coincidence trigger also requires the detection of a local air shower by a small external air-shower array. The addition of the explicit air-shower trigger ensures that the latter data correspond to showers of a larger particle size, and triggering by very localised shower cores is then unlikely. When including a shower trigger, the decoherence results appear substantially different in form. The coincidence rate between two detectors only can be approximated by a power-law variation with separation distance. When triggering involves an air-shower array, the variation becomes close to an exponential form with characteristic exponent distances varying systematically with increasing detector and air-shower size thresholds. A result is that one can see that small air showers will exhibit clear non-Poissonian density fluctuations near their cores, out to distances of ~5 m, or at shower energies below ~0.05 PeV. These ideas can be helpful in understanding the statistical properties of signals when using large detectors in air-shower arrays.","PeriodicalId":48646,"journal":{"name":"Universe","volume":"60 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurements of Decoherence in Small Sea-Level Extensive Air Showers\",\"authors\":\"Roger Clay\",\"doi\":\"10.3390/universe10080308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study is made of the progressive ‘decoherence’ of cosmic ray extensive air-shower particle-detector signals in small air showers through measurements of coincidence rates for pairs of detectors versus the detector separation. Measurements are made both when only the two separated detectors themselves trigger in coincidence, and when that coincidence trigger also requires the detection of a local air shower by a small external air-shower array. The addition of the explicit air-shower trigger ensures that the latter data correspond to showers of a larger particle size, and triggering by very localised shower cores is then unlikely. When including a shower trigger, the decoherence results appear substantially different in form. The coincidence rate between two detectors only can be approximated by a power-law variation with separation distance. When triggering involves an air-shower array, the variation becomes close to an exponential form with characteristic exponent distances varying systematically with increasing detector and air-shower size thresholds. A result is that one can see that small air showers will exhibit clear non-Poissonian density fluctuations near their cores, out to distances of ~5 m, or at shower energies below ~0.05 PeV. These ideas can be helpful in understanding the statistical properties of signals when using large detectors in air-shower arrays.\",\"PeriodicalId\":48646,\"journal\":{\"name\":\"Universe\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/universe10080308\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universe","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10080308","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

通过测量成对探测器的重合率与探测器间距的关系,对小型气流中宇宙射线广泛气流粒子探测器信号的逐渐 "退相干 "进行了研究。测量既包括仅在两个分离的探测器本身触发重合的情况下,也包括重合触发还需要外部小型气淋阵列探测到局部气淋的情况。增加明确的气雨触发器可确保后一种情况下的数据与较大粒径的气雨相对应,因此不太可能由非常局部的气雨核心触发。加入气流触发器后,退相干结果在形式上有很大不同。两个探测器之间的重合率只能用随距离变化的幂律变化来近似。当触发涉及空气喷淋阵列时,变化接近于指数形式,特征指数距离随探测器和空气喷淋尺寸阈值的增加而系统变化。其结果是,我们可以看到,小气淋在其核心附近、距离约 5 米或气淋能量低于约 0.05 PeV 时,会表现出明显的非泊松密度波动。在气雨阵列中使用大型探测器时,这些想法有助于理解信号的统计特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurements of Decoherence in Small Sea-Level Extensive Air Showers
A study is made of the progressive ‘decoherence’ of cosmic ray extensive air-shower particle-detector signals in small air showers through measurements of coincidence rates for pairs of detectors versus the detector separation. Measurements are made both when only the two separated detectors themselves trigger in coincidence, and when that coincidence trigger also requires the detection of a local air shower by a small external air-shower array. The addition of the explicit air-shower trigger ensures that the latter data correspond to showers of a larger particle size, and triggering by very localised shower cores is then unlikely. When including a shower trigger, the decoherence results appear substantially different in form. The coincidence rate between two detectors only can be approximated by a power-law variation with separation distance. When triggering involves an air-shower array, the variation becomes close to an exponential form with characteristic exponent distances varying systematically with increasing detector and air-shower size thresholds. A result is that one can see that small air showers will exhibit clear non-Poissonian density fluctuations near their cores, out to distances of ~5 m, or at shower energies below ~0.05 PeV. These ideas can be helpful in understanding the statistical properties of signals when using large detectors in air-shower arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Universe
Universe Physics and Astronomy-General Physics and Astronomy
CiteScore
4.30
自引率
17.20%
发文量
562
审稿时长
24.38 days
期刊介绍: Universe (ISSN 2218-1997) is an international peer-reviewed open access journal focused on fundamental principles in physics. It publishes reviews, research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their research results in as much detail as possible. There is no restriction on the length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信