Chi‐Hui Tsou, Hang Luo, Shang‐Ming Lin, Charasphat Preuksarattanawut, Pranut Potiyaraj, Chin‐San Wu, Fei‐Fan Ge, Juan Du, Xiaomei Wei
{"title":"利用天然棉秆提高聚(乳酸)/聚(己二酸丁二醇酯-共对苯二甲酸酯)可架桥复合材料的生态友好性:改善机械性能、阻隔性能和兼容性的新方法","authors":"Chi‐Hui Tsou, Hang Luo, Shang‐Ming Lin, Charasphat Preuksarattanawut, Pranut Potiyaraj, Chin‐San Wu, Fei‐Fan Ge, Juan Du, Xiaomei Wei","doi":"10.1002/pen.26881","DOIUrl":null,"url":null,"abstract":"<jats:label/>This study investigates the potential of using natural cotton stalk (CS) to enhance the properties of poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) composite materials. Simple processed CS, used as a bio‐based filler, is integrated into the PLA/PBAT matrix with the objective of improving mechanical properties, barrier performance, and compatibility, while simultaneously reducing costs and environmental impact. The experiments conducted include tensile testing, scanning electron microscopy analysis, Fourier‐transform infrared spectroscopy (FTIR) analysis, X‐ray diffraction study, thermogravimetric analysis, contact angle measurement, water absorption tests, as well as water vapor and oxygen permeability tests. The results demonstrate that the inclusion of CS significantly enhances the mechanical properties and crystallinity of PLA/PBAT composites, along with increasing their water vapor and oxygen barrier capabilities. Compared to PLA/PBAT without CS, the addition of 2% CS to PLA/PBAT led to substantial improvements in tensile strength and elongation at break, with increases of 21.5%, 41.6%, and 74.4%, respectively. Additionally, scanning electron microscopy and Fourier‐transform infrared spectroscopy analyses indicate that the incorporation of CS promotes the compatibility and chemical interaction between PLA and PBAT, thereby enhancing various properties of the composite material. Image analysis revealed that the distribution area of CS fibers in the polymer matrix increased with content up to a peak at 2% but decreased at higher contents due to severe agglomeration, leading to uneven distribution and performance decline. This work proposes three possible reasons for the improvement in water vapor and oxygen permeability performance. Overall, the analysis suggests that an optimal amount of CS can effectively enhance multiple properties of PLA/PBAT composites, while excessive CS may lead to a decline in performance.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Cotton stalk (CS) boosts polylactic acid/poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) tensile strength by 21.5% and elongation by 41.6% at 2% inclusion.</jats:list-item> <jats:list-item>CS addition enhances water vapor and oxygen barrier properties of PLA/PBAT.</jats:list-item> <jats:list-item>Scanning electron microscopy and Fourier‐transform infrared spectroscopy show CS improves PLA/PBAT compatibility and strength.</jats:list-item> <jats:list-item>Optimal CS content at 2% identified for best mechanical and barrier performance.</jats:list-item> <jats:list-item>Study validates using agricultural waste as fillers in eco‐friendly composites.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"67 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco‐friendly enhancement of poly(lactic acid)/poly(butylene adipate‐co‐terephthalate) bridgeable composites using natural cotton stalk: A novel approach to improved mechanical, barrier properties, and compatibility\",\"authors\":\"Chi‐Hui Tsou, Hang Luo, Shang‐Ming Lin, Charasphat Preuksarattanawut, Pranut Potiyaraj, Chin‐San Wu, Fei‐Fan Ge, Juan Du, Xiaomei Wei\",\"doi\":\"10.1002/pen.26881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>This study investigates the potential of using natural cotton stalk (CS) to enhance the properties of poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) composite materials. Simple processed CS, used as a bio‐based filler, is integrated into the PLA/PBAT matrix with the objective of improving mechanical properties, barrier performance, and compatibility, while simultaneously reducing costs and environmental impact. The experiments conducted include tensile testing, scanning electron microscopy analysis, Fourier‐transform infrared spectroscopy (FTIR) analysis, X‐ray diffraction study, thermogravimetric analysis, contact angle measurement, water absorption tests, as well as water vapor and oxygen permeability tests. The results demonstrate that the inclusion of CS significantly enhances the mechanical properties and crystallinity of PLA/PBAT composites, along with increasing their water vapor and oxygen barrier capabilities. Compared to PLA/PBAT without CS, the addition of 2% CS to PLA/PBAT led to substantial improvements in tensile strength and elongation at break, with increases of 21.5%, 41.6%, and 74.4%, respectively. Additionally, scanning electron microscopy and Fourier‐transform infrared spectroscopy analyses indicate that the incorporation of CS promotes the compatibility and chemical interaction between PLA and PBAT, thereby enhancing various properties of the composite material. Image analysis revealed that the distribution area of CS fibers in the polymer matrix increased with content up to a peak at 2% but decreased at higher contents due to severe agglomeration, leading to uneven distribution and performance decline. This work proposes three possible reasons for the improvement in water vapor and oxygen permeability performance. Overall, the analysis suggests that an optimal amount of CS can effectively enhance multiple properties of PLA/PBAT composites, while excessive CS may lead to a decline in performance.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Cotton stalk (CS) boosts polylactic acid/poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) tensile strength by 21.5% and elongation by 41.6% at 2% inclusion.</jats:list-item> <jats:list-item>CS addition enhances water vapor and oxygen barrier properties of PLA/PBAT.</jats:list-item> <jats:list-item>Scanning electron microscopy and Fourier‐transform infrared spectroscopy show CS improves PLA/PBAT compatibility and strength.</jats:list-item> <jats:list-item>Optimal CS content at 2% identified for best mechanical and barrier performance.</jats:list-item> <jats:list-item>Study validates using agricultural waste as fillers in eco‐friendly composites.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26881\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26881","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Eco‐friendly enhancement of poly(lactic acid)/poly(butylene adipate‐co‐terephthalate) bridgeable composites using natural cotton stalk: A novel approach to improved mechanical, barrier properties, and compatibility
This study investigates the potential of using natural cotton stalk (CS) to enhance the properties of poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) composite materials. Simple processed CS, used as a bio‐based filler, is integrated into the PLA/PBAT matrix with the objective of improving mechanical properties, barrier performance, and compatibility, while simultaneously reducing costs and environmental impact. The experiments conducted include tensile testing, scanning electron microscopy analysis, Fourier‐transform infrared spectroscopy (FTIR) analysis, X‐ray diffraction study, thermogravimetric analysis, contact angle measurement, water absorption tests, as well as water vapor and oxygen permeability tests. The results demonstrate that the inclusion of CS significantly enhances the mechanical properties and crystallinity of PLA/PBAT composites, along with increasing their water vapor and oxygen barrier capabilities. Compared to PLA/PBAT without CS, the addition of 2% CS to PLA/PBAT led to substantial improvements in tensile strength and elongation at break, with increases of 21.5%, 41.6%, and 74.4%, respectively. Additionally, scanning electron microscopy and Fourier‐transform infrared spectroscopy analyses indicate that the incorporation of CS promotes the compatibility and chemical interaction between PLA and PBAT, thereby enhancing various properties of the composite material. Image analysis revealed that the distribution area of CS fibers in the polymer matrix increased with content up to a peak at 2% but decreased at higher contents due to severe agglomeration, leading to uneven distribution and performance decline. This work proposes three possible reasons for the improvement in water vapor and oxygen permeability performance. Overall, the analysis suggests that an optimal amount of CS can effectively enhance multiple properties of PLA/PBAT composites, while excessive CS may lead to a decline in performance.HighlightsCotton stalk (CS) boosts polylactic acid/poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) tensile strength by 21.5% and elongation by 41.6% at 2% inclusion.CS addition enhances water vapor and oxygen barrier properties of PLA/PBAT.Scanning electron microscopy and Fourier‐transform infrared spectroscopy show CS improves PLA/PBAT compatibility and strength.Optimal CS content at 2% identified for best mechanical and barrier performance.Study validates using agricultural waste as fillers in eco‐friendly composites.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.