分子几何的弦图方法

Sebastian Ali Sacasa Cespedes
{"title":"分子几何的弦图方法","authors":"Sebastian Ali Sacasa Cespedes","doi":"arxiv-2407.14533","DOIUrl":null,"url":null,"abstract":"Introduction: molecular geometry, the three-dimensional arrangement of atoms\nwithin a molecule, is fundamental to understanding chemical reactivity,\nphysical properties, and biological activity. The prevailing models used to\ndescribe molecular geometry include the Valence Shell Electron Pair Repulsion\n(VSEPR) theory, hybridization theory, and molecular orbital theory. While these\nmodels provide significant insights, they also have inherent limitations.\nApplying string theory and graph theory with topological and macrotensorial\nmethods could improve the understanding of molecular behavior. Objective:\nexplore the potential applications of string and graph theory to material\nscience, focusing on molecular geometry, electron domains, and phase changes\nvia symmetries. Molecular geometry: each molecule is associated with a simple\ngraph with an orthonormal representation inducing metrics via the usage of\nmacrotensor operators, allowing the calculation of angles between molecules and\nfollowing the equations of motion. Phase changes: a series of inequalities are\nproposed depending on the energy-momentum densities of bonds and the edges of\nthe associated graph where electrons or atoms are located, its topology, and\nisometries, exploring possible new states of matter. Conclusions: application\nof macrotensors, graphs, and string theory to material science, specifically to\nmolecular geometry and phase changes, allows for a more dynamic and flexible\ndescription of natural phenomena involving matter and the prediction of\npossible new states of matter. This presents a different perspective, opening\npossibilities for experimental confirmation and applications of the approach\npresented here.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A String-Graph Approach to Molecular Geometry\",\"authors\":\"Sebastian Ali Sacasa Cespedes\",\"doi\":\"arxiv-2407.14533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: molecular geometry, the three-dimensional arrangement of atoms\\nwithin a molecule, is fundamental to understanding chemical reactivity,\\nphysical properties, and biological activity. The prevailing models used to\\ndescribe molecular geometry include the Valence Shell Electron Pair Repulsion\\n(VSEPR) theory, hybridization theory, and molecular orbital theory. While these\\nmodels provide significant insights, they also have inherent limitations.\\nApplying string theory and graph theory with topological and macrotensorial\\nmethods could improve the understanding of molecular behavior. Objective:\\nexplore the potential applications of string and graph theory to material\\nscience, focusing on molecular geometry, electron domains, and phase changes\\nvia symmetries. Molecular geometry: each molecule is associated with a simple\\ngraph with an orthonormal representation inducing metrics via the usage of\\nmacrotensor operators, allowing the calculation of angles between molecules and\\nfollowing the equations of motion. Phase changes: a series of inequalities are\\nproposed depending on the energy-momentum densities of bonds and the edges of\\nthe associated graph where electrons or atoms are located, its topology, and\\nisometries, exploring possible new states of matter. Conclusions: application\\nof macrotensors, graphs, and string theory to material science, specifically to\\nmolecular geometry and phase changes, allows for a more dynamic and flexible\\ndescription of natural phenomena involving matter and the prediction of\\npossible new states of matter. This presents a different perspective, opening\\npossibilities for experimental confirmation and applications of the approach\\npresented here.\",\"PeriodicalId\":501190,\"journal\":{\"name\":\"arXiv - PHYS - General Physics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - General Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:分子几何,即分子中原子的三维排列,是理解化学反应性、物理性质和生物活性的基础。用于描述分子几何的主流模型包括价层电子对斥力(VSEPR)理论、杂化理论和分子轨道理论。将弦理论和图论与拓扑方法和宏观尺度方法结合起来,可以加深对分子行为的理解。目的:探索弦理论和图论在材料科学中的潜在应用,重点是分子几何、电子域和对称性相变。分子几何:每个分子都与一个简单的图相关联,该图具有正交表示,通过使用宏观张量算子诱导度量,允许计算分子间的角度并遵循运动方程。相变:提出了一系列不等式,这些不等式取决于键的能量-动量密度以及电子或原子所在的相关图的边缘、拓扑结构和几何形状,从而探索可能的新物质状态。结论:将宏量子、图和弦理论应用于材料科学,特别是应用于分子几何和相变,可以更动态、更灵活地描述涉及物质的自然现象,并预测可能出现的新物质状态。这提出了一个不同的视角,为本文介绍的方法的实验证实和应用开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A String-Graph Approach to Molecular Geometry
Introduction: molecular geometry, the three-dimensional arrangement of atoms within a molecule, is fundamental to understanding chemical reactivity, physical properties, and biological activity. The prevailing models used to describe molecular geometry include the Valence Shell Electron Pair Repulsion (VSEPR) theory, hybridization theory, and molecular orbital theory. While these models provide significant insights, they also have inherent limitations. Applying string theory and graph theory with topological and macrotensorial methods could improve the understanding of molecular behavior. Objective: explore the potential applications of string and graph theory to material science, focusing on molecular geometry, electron domains, and phase changes via symmetries. Molecular geometry: each molecule is associated with a simple graph with an orthonormal representation inducing metrics via the usage of macrotensor operators, allowing the calculation of angles between molecules and following the equations of motion. Phase changes: a series of inequalities are proposed depending on the energy-momentum densities of bonds and the edges of the associated graph where electrons or atoms are located, its topology, and isometries, exploring possible new states of matter. Conclusions: application of macrotensors, graphs, and string theory to material science, specifically to molecular geometry and phase changes, allows for a more dynamic and flexible description of natural phenomena involving matter and the prediction of possible new states of matter. This presents a different perspective, opening possibilities for experimental confirmation and applications of the approach presented here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信