Abhishek Udnoor , Béla Urbán , Karel Škoch , Jan Hynek , Michal Horáček , Martin Lamač , Jan Demel
{"title":"使用活性硼烷(一种多孔硼烷簇聚合物)催化脱卤","authors":"Abhishek Udnoor , Béla Urbán , Karel Škoch , Jan Hynek , Michal Horáček , Martin Lamač , Jan Demel","doi":"10.1039/d4cy00732h","DOIUrl":null,"url":null,"abstract":"<div><p>Activated borane (<strong>ActB</strong>), a metal- and halogen-free porous borane cluster polymer with a significant Lewis acidity, has been successfully used as a heterogeneous catalyst for hydrodehalogenation reactions of aliphatic fluorides and chlorides using triethylsilane as a reductant. In analogy to known homogeneous systems, full dehalogenation of organohalides is achieved with a predominant formation of Friedel–Crafts alkylation products in aromatic reaction media. Importantly, the herein described material is robust, tolerates elevated reaction temperatures and can be re-used, while reaching a turnover number (TON) of up to 5190. These features make it an attractive candidate for a sustainable disposal of halogenated pollutants by heterogeneous catalysis.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 16","pages":"Pages 4458-4465"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00732h?page=search","citationCount":"0","resultStr":"{\"title\":\"Catalytic dehalogenation with activated borane, a porous borane cluster polymer†\",\"authors\":\"Abhishek Udnoor , Béla Urbán , Karel Škoch , Jan Hynek , Michal Horáček , Martin Lamač , Jan Demel\",\"doi\":\"10.1039/d4cy00732h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Activated borane (<strong>ActB</strong>), a metal- and halogen-free porous borane cluster polymer with a significant Lewis acidity, has been successfully used as a heterogeneous catalyst for hydrodehalogenation reactions of aliphatic fluorides and chlorides using triethylsilane as a reductant. In analogy to known homogeneous systems, full dehalogenation of organohalides is achieved with a predominant formation of Friedel–Crafts alkylation products in aromatic reaction media. Importantly, the herein described material is robust, tolerates elevated reaction temperatures and can be re-used, while reaching a turnover number (TON) of up to 5190. These features make it an attractive candidate for a sustainable disposal of halogenated pollutants by heterogeneous catalysis.</p></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"14 16\",\"pages\":\"Pages 4458-4465\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00732h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324003988\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003988","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Catalytic dehalogenation with activated borane, a porous borane cluster polymer†
Activated borane (ActB), a metal- and halogen-free porous borane cluster polymer with a significant Lewis acidity, has been successfully used as a heterogeneous catalyst for hydrodehalogenation reactions of aliphatic fluorides and chlorides using triethylsilane as a reductant. In analogy to known homogeneous systems, full dehalogenation of organohalides is achieved with a predominant formation of Friedel–Crafts alkylation products in aromatic reaction media. Importantly, the herein described material is robust, tolerates elevated reaction temperatures and can be re-used, while reaching a turnover number (TON) of up to 5190. These features make it an attractive candidate for a sustainable disposal of halogenated pollutants by heterogeneous catalysis.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days