Abhishek Udnoor , Béla Urbán , Karel Škoch , Jan Hynek , Michal Horáček , Martin Lamač , Jan Demel
{"title":"使用活性硼烷(一种多孔硼烷簇聚合物)催化脱卤","authors":"Abhishek Udnoor , Béla Urbán , Karel Škoch , Jan Hynek , Michal Horáček , Martin Lamač , Jan Demel","doi":"10.1039/d4cy00732h","DOIUrl":null,"url":null,"abstract":"<div><p>Activated borane (<strong>ActB</strong>), a metal- and halogen-free porous borane cluster polymer with a significant Lewis acidity, has been successfully used as a heterogeneous catalyst for hydrodehalogenation reactions of aliphatic fluorides and chlorides using triethylsilane as a reductant. In analogy to known homogeneous systems, full dehalogenation of organohalides is achieved with a predominant formation of Friedel–Crafts alkylation products in aromatic reaction media. Importantly, the herein described material is robust, tolerates elevated reaction temperatures and can be re-used, while reaching a turnover number (TON) of up to 5190. These features make it an attractive candidate for a sustainable disposal of halogenated pollutants by heterogeneous catalysis.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00732h?page=search","citationCount":"0","resultStr":"{\"title\":\"Catalytic dehalogenation with activated borane, a porous borane cluster polymer†\",\"authors\":\"Abhishek Udnoor , Béla Urbán , Karel Škoch , Jan Hynek , Michal Horáček , Martin Lamač , Jan Demel\",\"doi\":\"10.1039/d4cy00732h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Activated borane (<strong>ActB</strong>), a metal- and halogen-free porous borane cluster polymer with a significant Lewis acidity, has been successfully used as a heterogeneous catalyst for hydrodehalogenation reactions of aliphatic fluorides and chlorides using triethylsilane as a reductant. In analogy to known homogeneous systems, full dehalogenation of organohalides is achieved with a predominant formation of Friedel–Crafts alkylation products in aromatic reaction media. Importantly, the herein described material is robust, tolerates elevated reaction temperatures and can be re-used, while reaching a turnover number (TON) of up to 5190. These features make it an attractive candidate for a sustainable disposal of halogenated pollutants by heterogeneous catalysis.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00732h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324003988\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003988","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Catalytic dehalogenation with activated borane, a porous borane cluster polymer†
Activated borane (ActB), a metal- and halogen-free porous borane cluster polymer with a significant Lewis acidity, has been successfully used as a heterogeneous catalyst for hydrodehalogenation reactions of aliphatic fluorides and chlorides using triethylsilane as a reductant. In analogy to known homogeneous systems, full dehalogenation of organohalides is achieved with a predominant formation of Friedel–Crafts alkylation products in aromatic reaction media. Importantly, the herein described material is robust, tolerates elevated reaction temperatures and can be re-used, while reaching a turnover number (TON) of up to 5190. These features make it an attractive candidate for a sustainable disposal of halogenated pollutants by heterogeneous catalysis.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.