{"title":"通过元 QTL 分析确定与水稻主要病害相关的潜在候选抗性基因的基因组图谱","authors":"Simran Goyal, Dinesh Kumar Saini, Pankaj Kumar, Gurwinder Kaur, Umesh Preethi Praba, Krishna Sai Karnatam, Gautam Chhabra, Rajveer Singh, Yogesh Vikal","doi":"10.1007/s12038-024-00460-9","DOIUrl":null,"url":null,"abstract":"<p>Rice production is severely affected by various diseases such as bacterial leaf blight (BLB), brown spot (BS), false smut (FS), foot rot (FR), rice blast (RB), and sheath blight (SB). In recent years, several quantitative trait loci (QTLs) studies involving different populations have been carried out, resulting in the identification of hundreds of resistance QTLs for each disease. These QTLs can be integrated and analyzed using meta-QTL (MQTL) analysis for better understanding of the genetic architecture underlying multiple disease resistance (MDR). This study involved an MQTL analysis on 661 QTLs (378, 161, 21, 41, 44, and 16 QTLs for SB, RB, BLB, BS, FS, and FR, respectively) retrieved from 50 individual studies published from 1995 to 2021. Of these, 503 QTLs were projected finally onto the consensus map saturated with 6,275 markers, resulting in 73 MQTLs, including 27 MDR-MQTLs conferring resistance to three or more diseases. Forty-seven MQTLs were validated using marker-trait associations identified in published genome-wide association studies. A total of 3,310 genes, including both R and defense genes, were also identified within some selected high-confidence MQTL regions that were investigated further for the syntenic relationship with barley, wheat, and maize genomes. Thirty-nine high-confidence candidate genes were selected based on their expression patterns and recommended for future studies involving functional validation, genetic engineering, and gene editing. Nineteen MQTLs were co-localized with 39 known R genes for BLB and RB diseases. These results could pave the way to utilize candidate genes in a marker-assisted breeding program for MDR in rice.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":"32 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining genomic landscape for identification of potential candidate resistance genes associated with major rice diseases through MetaQTL analysis\",\"authors\":\"Simran Goyal, Dinesh Kumar Saini, Pankaj Kumar, Gurwinder Kaur, Umesh Preethi Praba, Krishna Sai Karnatam, Gautam Chhabra, Rajveer Singh, Yogesh Vikal\",\"doi\":\"10.1007/s12038-024-00460-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rice production is severely affected by various diseases such as bacterial leaf blight (BLB), brown spot (BS), false smut (FS), foot rot (FR), rice blast (RB), and sheath blight (SB). In recent years, several quantitative trait loci (QTLs) studies involving different populations have been carried out, resulting in the identification of hundreds of resistance QTLs for each disease. These QTLs can be integrated and analyzed using meta-QTL (MQTL) analysis for better understanding of the genetic architecture underlying multiple disease resistance (MDR). This study involved an MQTL analysis on 661 QTLs (378, 161, 21, 41, 44, and 16 QTLs for SB, RB, BLB, BS, FS, and FR, respectively) retrieved from 50 individual studies published from 1995 to 2021. Of these, 503 QTLs were projected finally onto the consensus map saturated with 6,275 markers, resulting in 73 MQTLs, including 27 MDR-MQTLs conferring resistance to three or more diseases. Forty-seven MQTLs were validated using marker-trait associations identified in published genome-wide association studies. A total of 3,310 genes, including both R and defense genes, were also identified within some selected high-confidence MQTL regions that were investigated further for the syntenic relationship with barley, wheat, and maize genomes. Thirty-nine high-confidence candidate genes were selected based on their expression patterns and recommended for future studies involving functional validation, genetic engineering, and gene editing. Nineteen MQTLs were co-localized with 39 known R genes for BLB and RB diseases. These results could pave the way to utilize candidate genes in a marker-assisted breeding program for MDR in rice.</p>\",\"PeriodicalId\":15171,\"journal\":{\"name\":\"Journal of Biosciences\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12038-024-00460-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12038-024-00460-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Defining genomic landscape for identification of potential candidate resistance genes associated with major rice diseases through MetaQTL analysis
Rice production is severely affected by various diseases such as bacterial leaf blight (BLB), brown spot (BS), false smut (FS), foot rot (FR), rice blast (RB), and sheath blight (SB). In recent years, several quantitative trait loci (QTLs) studies involving different populations have been carried out, resulting in the identification of hundreds of resistance QTLs for each disease. These QTLs can be integrated and analyzed using meta-QTL (MQTL) analysis for better understanding of the genetic architecture underlying multiple disease resistance (MDR). This study involved an MQTL analysis on 661 QTLs (378, 161, 21, 41, 44, and 16 QTLs for SB, RB, BLB, BS, FS, and FR, respectively) retrieved from 50 individual studies published from 1995 to 2021. Of these, 503 QTLs were projected finally onto the consensus map saturated with 6,275 markers, resulting in 73 MQTLs, including 27 MDR-MQTLs conferring resistance to three or more diseases. Forty-seven MQTLs were validated using marker-trait associations identified in published genome-wide association studies. A total of 3,310 genes, including both R and defense genes, were also identified within some selected high-confidence MQTL regions that were investigated further for the syntenic relationship with barley, wheat, and maize genomes. Thirty-nine high-confidence candidate genes were selected based on their expression patterns and recommended for future studies involving functional validation, genetic engineering, and gene editing. Nineteen MQTLs were co-localized with 39 known R genes for BLB and RB diseases. These results could pave the way to utilize candidate genes in a marker-assisted breeding program for MDR in rice.
期刊介绍:
The Journal of Biosciences is a quarterly journal published by the Indian Academy of Sciences, Bangalore. It covers all areas of Biology and is the premier journal in the country within its scope. It is indexed in Current Contents and other standard Biological and Medical databases. The Journal of Biosciences began in 1934 as the Proceedings of the Indian Academy of Sciences (Section B). This continued until 1978 when it was split into three parts : Proceedings-Animal Sciences, Proceedings-Plant Sciences and Proceedings-Experimental Biology. Proceedings-Experimental Biology was renamed Journal of Biosciences in 1979; and in 1991, Proceedings-Animal Sciences and Proceedings-Plant Sciences merged with it.