异质性流行病学模型的随机消亡和持续性

IF 2.4 3区 数学 Q1 MATHEMATICS
Hetsron L. Nyandjo-Bamen, Jean Marie Ntaganda, Aurélien Tellier, Olivier Menoukeu-Pamen
{"title":"异质性流行病学模型的随机消亡和持续性","authors":"Hetsron L. Nyandjo-Bamen, Jean Marie Ntaganda, Aurélien Tellier, Olivier Menoukeu-Pamen","doi":"10.1007/s12190-024-02191-4","DOIUrl":null,"url":null,"abstract":"<p>We formulate a stochastic differential equation(SDE) model from a deterministic model of imperfect vaccination building on a recent analytical approach of We suggest it appears as Allen et al [5] 81(2):487-515, 2020. https://doi.org/10.1007/s00285-020-01516-8), which derivation procedure is based on the elementary events occurring during the epidemiological dynamics and their corresponding probabilities. We prove the global existence of a unique weak non-negative solution starting from the non-negative initial value of the formulated model. We compute the conditions under which extinction and persistence in mean hold, and illustrate our theoretical results using numerical simulations. Determining the stochastic outcome of epidemiological dynamics under imperfect vaccination is important to optimize vaccination campaigns.\n</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"60 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic extinction and persistence of a heterogeneous epidemiological model\",\"authors\":\"Hetsron L. Nyandjo-Bamen, Jean Marie Ntaganda, Aurélien Tellier, Olivier Menoukeu-Pamen\",\"doi\":\"10.1007/s12190-024-02191-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We formulate a stochastic differential equation(SDE) model from a deterministic model of imperfect vaccination building on a recent analytical approach of We suggest it appears as Allen et al [5] 81(2):487-515, 2020. https://doi.org/10.1007/s00285-020-01516-8), which derivation procedure is based on the elementary events occurring during the epidemiological dynamics and their corresponding probabilities. We prove the global existence of a unique weak non-negative solution starting from the non-negative initial value of the formulated model. We compute the conditions under which extinction and persistence in mean hold, and illustrate our theoretical results using numerical simulations. Determining the stochastic outcome of epidemiological dynamics under imperfect vaccination is important to optimize vaccination campaigns.\\n</p>\",\"PeriodicalId\":15034,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computing\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02191-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02191-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们从不完全性疫苗接种的确定性模型出发,根据艾伦等人[5][81(2):487-515, 2020. https://doi.org/10.1007/s00285-020-01516-8]的最新分析方法建立了一个随机微分方程(SDE)模型,其推导过程基于流行病学动态过程中发生的基本事件及其相应概率。我们证明了从所建立模型的非负初始值开始,唯一弱非负解的全局存在性。我们计算了平均值中灭绝和持续存在的条件,并用数值模拟说明了我们的理论结果。确定不完全接种情况下流行病动态的随机结果对于优化疫苗接种活动非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic extinction and persistence of a heterogeneous epidemiological model

Stochastic extinction and persistence of a heterogeneous epidemiological model

We formulate a stochastic differential equation(SDE) model from a deterministic model of imperfect vaccination building on a recent analytical approach of We suggest it appears as Allen et al [5] 81(2):487-515, 2020. https://doi.org/10.1007/s00285-020-01516-8), which derivation procedure is based on the elementary events occurring during the epidemiological dynamics and their corresponding probabilities. We prove the global existence of a unique weak non-negative solution starting from the non-negative initial value of the formulated model. We compute the conditions under which extinction and persistence in mean hold, and illustrate our theoretical results using numerical simulations. Determining the stochastic outcome of epidemiological dynamics under imperfect vaccination is important to optimize vaccination campaigns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics and Computing
Journal of Applied Mathematics and Computing Mathematics-Computational Mathematics
CiteScore
4.20
自引率
4.50%
发文量
131
期刊介绍: JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信