低阶值优化问题的改良莱文伯格-马夸特算法

IF 2.4 3区 数学 Q1 MATHEMATICS
Xiaochen Lv, Zhensheng Yu
{"title":"低阶值优化问题的改良莱文伯格-马夸特算法","authors":"Xiaochen Lv, Zhensheng Yu","doi":"10.1007/s12190-024-02140-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a modified Levenberg–Marquardt algorithm for Low Order Value Optimization problems(LOVO). In the algorithm, we obtain the search direction by a combination of LM steps and approximate LM steps, and solve the subproblems therein by QR decomposition or cholesky decomposition. We prove the global convergence of the algorithm theoretically and discuss the worst-case complexity of the algorithm. Numerical results show that the algorithm in this paper is superior in terms of number of iterations and computation time compared to both LM-LOVO and GN-LOVO algorithm.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"20 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Levenberg–Marquardt algorithm for low order-value optimization problem\",\"authors\":\"Xiaochen Lv, Zhensheng Yu\",\"doi\":\"10.1007/s12190-024-02140-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a modified Levenberg–Marquardt algorithm for Low Order Value Optimization problems(LOVO). In the algorithm, we obtain the search direction by a combination of LM steps and approximate LM steps, and solve the subproblems therein by QR decomposition or cholesky decomposition. We prove the global convergence of the algorithm theoretically and discuss the worst-case complexity of the algorithm. Numerical results show that the algorithm in this paper is superior in terms of number of iterations and computation time compared to both LM-LOVO and GN-LOVO algorithm.</p>\",\"PeriodicalId\":15034,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02140-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02140-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一种针对低阶值优化问题(LOVO)的改进 Levenberg-Marquardt 算法。在该算法中,我们通过 LM 步骤和近似 LM 步骤的组合来获得搜索方向,并通过 QR 分解或 cholesky 分解来求解其中的子问题。我们从理论上证明了算法的全局收敛性,并讨论了算法的最坏情况复杂度。数值结果表明,与 LM-LOVO 算法和 GN-LOVO 算法相比,本文的算法在迭代次数和计算时间上都更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A modified Levenberg–Marquardt algorithm for low order-value optimization problem

A modified Levenberg–Marquardt algorithm for low order-value optimization problem

In this paper, we consider a modified Levenberg–Marquardt algorithm for Low Order Value Optimization problems(LOVO). In the algorithm, we obtain the search direction by a combination of LM steps and approximate LM steps, and solve the subproblems therein by QR decomposition or cholesky decomposition. We prove the global convergence of the algorithm theoretically and discuss the worst-case complexity of the algorithm. Numerical results show that the algorithm in this paper is superior in terms of number of iterations and computation time compared to both LM-LOVO and GN-LOVO algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics and Computing
Journal of Applied Mathematics and Computing Mathematics-Computational Mathematics
CiteScore
4.20
自引率
4.50%
发文量
131
期刊介绍: JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信