不可嵌入CR流形上的CR帕尼茨算子

Yuya Takeuchi
{"title":"不可嵌入CR流形上的CR帕尼茨算子","authors":"Yuya Takeuchi","doi":"arxiv-2407.16185","DOIUrl":null,"url":null,"abstract":"The CR Paneitz operator is closely related to some important problems in CR\ngeometry. In this paper, we consider this operator on a non-embeddable CR\nmanifold. This operator is essentially self-adjoint and its spectrum is\ndiscrete except zero. Moreover, the eigenspace corresponding to each non-zero\neigenvalue is a finite dimensional subspace of the space of smooth functions.\nFurthermore, we show that the CR Paneitz operator on the Rossi sphere, an\nexample of non-embeddable CR manifolds, has infinitely many negative\neigenvalues, which is significantly different from the embeddable case.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CR Paneitz operator on non-embeddable CR manifolds\",\"authors\":\"Yuya Takeuchi\",\"doi\":\"arxiv-2407.16185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CR Paneitz operator is closely related to some important problems in CR\\ngeometry. In this paper, we consider this operator on a non-embeddable CR\\nmanifold. This operator is essentially self-adjoint and its spectrum is\\ndiscrete except zero. Moreover, the eigenspace corresponding to each non-zero\\neigenvalue is a finite dimensional subspace of the space of smooth functions.\\nFurthermore, we show that the CR Paneitz operator on the Rossi sphere, an\\nexample of non-embeddable CR manifolds, has infinitely many negative\\neigenvalues, which is significantly different from the embeddable case.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

CR Paneitz 算子与 CR 几何学中的一些重要问题密切相关。在本文中,我们考虑在不可嵌入的 CRmanifold 上的这个算子。该算子本质上是自交的,其频谱除了零以外都是离散的。而且,每个非特征值对应的特征空间是光滑函数空间的有限维子空间。此外,我们还证明了不可嵌入 CR 流形的一个例子,即 Rossi 球上的 CR Paneitz 算子具有无限多的负特征值,这与可嵌入的情况有显著不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CR Paneitz operator on non-embeddable CR manifolds
The CR Paneitz operator is closely related to some important problems in CR geometry. In this paper, we consider this operator on a non-embeddable CR manifold. This operator is essentially self-adjoint and its spectrum is discrete except zero. Moreover, the eigenspace corresponding to each non-zero eigenvalue is a finite dimensional subspace of the space of smooth functions. Furthermore, we show that the CR Paneitz operator on the Rossi sphere, an example of non-embeddable CR manifolds, has infinitely many negative eigenvalues, which is significantly different from the embeddable case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信