伪微分算子极谱值的荷尔德连续性、Gabor 框架边界和饱和度

Karlheinz Gröchenig, José Luis Romero, Michael Speckbacher
{"title":"伪微分算子极谱值的荷尔德连续性、Gabor 框架边界和饱和度","authors":"Karlheinz Gröchenig, José Luis Romero, Michael Speckbacher","doi":"arxiv-2407.18065","DOIUrl":null,"url":null,"abstract":"We build on our recent results on the Lipschitz dependence of the extreme\nspectral values of one-parameter families of pseudodifferential operators with\nsymbols in a weighted Sj\\\"ostrand class. We prove that larger symbol classes\nlead to H\\\"older continuity with respect to the parameter. This result is then\nused to investigate the behavior of frame bounds of families of Gabor systems\n$\\mathcal{G}(g,\\alpha\\Lambda)$ with respect to the parameter $\\alpha>0$, where\n$\\Lambda$ is a set of non-uniform, relatively separated time-frequency shifts,\nand $g\\in M^1_s(\\mathbb{R}^d)$, $0\\leq s\\leq 2$. In particular, we show that\nthe frame bounds depend continuously on $\\alpha$ if $g\\in M^1(\\mathbb{R}^d)$,\nand are H\\\"older continuous if $g\\in M^1_s(\\mathbb{R}^d)$, $0<s\\leq 2$, with\nthe H\\\"older exponent explicitly given.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hölder-Continuity of Extreme Spectral Values of Pseudodifferential Operators, Gabor Frame Bounds, and Saturation\",\"authors\":\"Karlheinz Gröchenig, José Luis Romero, Michael Speckbacher\",\"doi\":\"arxiv-2407.18065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We build on our recent results on the Lipschitz dependence of the extreme\\nspectral values of one-parameter families of pseudodifferential operators with\\nsymbols in a weighted Sj\\\\\\\"ostrand class. We prove that larger symbol classes\\nlead to H\\\\\\\"older continuity with respect to the parameter. This result is then\\nused to investigate the behavior of frame bounds of families of Gabor systems\\n$\\\\mathcal{G}(g,\\\\alpha\\\\Lambda)$ with respect to the parameter $\\\\alpha>0$, where\\n$\\\\Lambda$ is a set of non-uniform, relatively separated time-frequency shifts,\\nand $g\\\\in M^1_s(\\\\mathbb{R}^d)$, $0\\\\leq s\\\\leq 2$. In particular, we show that\\nthe frame bounds depend continuously on $\\\\alpha$ if $g\\\\in M^1(\\\\mathbb{R}^d)$,\\nand are H\\\\\\\"older continuous if $g\\\\in M^1_s(\\\\mathbb{R}^d)$, $0<s\\\\leq 2$, with\\nthe H\\\\\\\"older exponent explicitly given.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在最近关于符号在加权 Sj\"ostrand 类中的伪微分算子的单参数族的极值谱值的 Lipschitz 依赖性的结果的基础上进行研究。我们证明,符号类越大,参数的连续性就越大。然后,我们利用这一结果来研究 Gabor 系统$mathcal{G}(g,\alpha\Lambda)$族的帧边界在参数$\alpha>0$方面的行为,其中$Lambda$是一组非均匀的、相对分离的时频偏移,并且$g\in M^1_s(\mathbb{R}^d)$, $0\leq s\leq 2$。我们特别指出,如果$g/in M^1(\mathbb{R}^d)$, $0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Hölder-Continuity of Extreme Spectral Values of Pseudodifferential Operators, Gabor Frame Bounds, and Saturation
We build on our recent results on the Lipschitz dependence of the extreme spectral values of one-parameter families of pseudodifferential operators with symbols in a weighted Sj\"ostrand class. We prove that larger symbol classes lead to H\"older continuity with respect to the parameter. This result is then used to investigate the behavior of frame bounds of families of Gabor systems $\mathcal{G}(g,\alpha\Lambda)$ with respect to the parameter $\alpha>0$, where $\Lambda$ is a set of non-uniform, relatively separated time-frequency shifts, and $g\in M^1_s(\mathbb{R}^d)$, $0\leq s\leq 2$. In particular, we show that the frame bounds depend continuously on $\alpha$ if $g\in M^1(\mathbb{R}^d)$, and are H\"older continuous if $g\in M^1_s(\mathbb{R}^d)$, $0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信