论数值半径及其双规范的半有限编程特征

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Shmuel Friedland, Chi-Kwong Li
{"title":"论数值半径及其双规范的半有限编程特征","authors":"Shmuel Friedland, Chi-Kwong Li","doi":"10.1137/23m160356x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1414-1428, September 2024. <br/> Abstract. We state and give self-contained proofs of semidefinite programming characterizations of the numerical radius and its dual norm for matrices. We show that the computation of the numerical radius and its dual norm within [math] precision are polynomially time computable in the data and [math] using either the ellipsoid method or the short step, primal interior point method. We apply our results to give a simple formula for the spectral and the nuclear norm of a [math] real tensor in terms of the numerical radius and its dual norm.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"30 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Semidefinite Programming Characterizations of the Numerical Radius and Its Dual Norm\",\"authors\":\"Shmuel Friedland, Chi-Kwong Li\",\"doi\":\"10.1137/23m160356x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1414-1428, September 2024. <br/> Abstract. We state and give self-contained proofs of semidefinite programming characterizations of the numerical radius and its dual norm for matrices. We show that the computation of the numerical radius and its dual norm within [math] precision are polynomially time computable in the data and [math] using either the ellipsoid method or the short step, primal interior point method. We apply our results to give a simple formula for the spectral and the nuclear norm of a [math] real tensor in terms of the numerical radius and its dual norm.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m160356x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m160356x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷第 3 期,第 1414-1428 页,2024 年 9 月。 摘要。我们陈述并给出了矩阵数值半径及其对偶法的半有限编程特征的自足证明。我们证明,在[math]精度范围内计算数值半径及其对偶法,在数据和[math]中使用椭球法或短步原始内点法都是多项式时间可计算的。我们应用我们的结果给出了一个简单的公式,用数值半径及其对偶法计算[数学]实张量的谱法和核规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Semidefinite Programming Characterizations of the Numerical Radius and Its Dual Norm
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1414-1428, September 2024.
Abstract. We state and give self-contained proofs of semidefinite programming characterizations of the numerical radius and its dual norm for matrices. We show that the computation of the numerical radius and its dual norm within [math] precision are polynomially time computable in the data and [math] using either the ellipsoid method or the short step, primal interior point method. We apply our results to give a simple formula for the spectral and the nuclear norm of a [math] real tensor in terms of the numerical radius and its dual norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信