Ciro Abbud Righi, Biyensa Gurmessa, Ranjith P. Udawatta, Morgan P. Davis
{"title":"树木和草地缓冲区对农林巷作流域土壤碳的影响","authors":"Ciro Abbud Righi, Biyensa Gurmessa, Ranjith P. Udawatta, Morgan P. Davis","doi":"10.1007/s10457-024-01043-1","DOIUrl":null,"url":null,"abstract":"<div><p>Perennial vegetation in farmlands can mitigate anthropogenic greenhouse gases (GHG) by capturing atmospheric carbon and storing it in the soil for extended periods. The objective of this study was to quantify soil organic carbon (SOC) concentrations and stocks under tree buffer (TB), grass buffer (GB), grass waterways (WW) and crop field (CS, corn-soybean rotation) to evaluate the significance of conservation measures in C sequestration projects. Soil samples were collected up to 1 m depth at upper, middle, and lower landscape positions from 26-year-old TB, GB, and WW in a watershed. The SOC concentration decreased with increasing soil depth for all four land uses. However, as expected, bulk density increased with increasing soil depth for all four land uses. It was highest for the CS land use. In 2023, for the depth of 0–10 cm, SOC increased by +0.63, +1.06, +1.37 and +1.63% in CS, GB, TB, and WW, respectively, since the land uses were established 26 years ago. Land uses had greater impacts on SOC stock in the top 50 cm depth, with WW (113.5 ± 12.9 Mg ha<sup>−1</sup>), TB (106 ± 14.5 Mg ha<sup>−1</sup>), and GB (102.4 ± 11.6 Mg ha<sup>−1</sup>) compared to CS (90.9 ± 10.2 Mg ha<sup>−1</sup>). However, at watershed level, with ~ 10% cover by TB or GB areas and the rest under CS, SOC stock up to 50 cm depth was respectively 91.6 and 91.2 Mg ha<sup>−1</sup> compared to 90 Mg ha<sup>−1</sup> by CS alone—1.3 to 1.8% increase. This is a significant increase in soil organic carbon across the landscape, which was realized with the conservation practices and agroforestry, while also playing a crucial role in protecting surface runoff in the landscape. Future studies may consider valuation of the overall ecosystem services due to the land uses (conservation measures) and the trees by considering optimization of incorporating such technologies in the farming systems to reduce negative trade-offs.</p></div>","PeriodicalId":7610,"journal":{"name":"Agroforestry Systems","volume":"98 7","pages":"2483 - 2498"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trees and grass buffers impact on soil carbon in an agroforestry alleycropping watershed\",\"authors\":\"Ciro Abbud Righi, Biyensa Gurmessa, Ranjith P. Udawatta, Morgan P. Davis\",\"doi\":\"10.1007/s10457-024-01043-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perennial vegetation in farmlands can mitigate anthropogenic greenhouse gases (GHG) by capturing atmospheric carbon and storing it in the soil for extended periods. The objective of this study was to quantify soil organic carbon (SOC) concentrations and stocks under tree buffer (TB), grass buffer (GB), grass waterways (WW) and crop field (CS, corn-soybean rotation) to evaluate the significance of conservation measures in C sequestration projects. Soil samples were collected up to 1 m depth at upper, middle, and lower landscape positions from 26-year-old TB, GB, and WW in a watershed. The SOC concentration decreased with increasing soil depth for all four land uses. However, as expected, bulk density increased with increasing soil depth for all four land uses. It was highest for the CS land use. In 2023, for the depth of 0–10 cm, SOC increased by +0.63, +1.06, +1.37 and +1.63% in CS, GB, TB, and WW, respectively, since the land uses were established 26 years ago. Land uses had greater impacts on SOC stock in the top 50 cm depth, with WW (113.5 ± 12.9 Mg ha<sup>−1</sup>), TB (106 ± 14.5 Mg ha<sup>−1</sup>), and GB (102.4 ± 11.6 Mg ha<sup>−1</sup>) compared to CS (90.9 ± 10.2 Mg ha<sup>−1</sup>). However, at watershed level, with ~ 10% cover by TB or GB areas and the rest under CS, SOC stock up to 50 cm depth was respectively 91.6 and 91.2 Mg ha<sup>−1</sup> compared to 90 Mg ha<sup>−1</sup> by CS alone—1.3 to 1.8% increase. This is a significant increase in soil organic carbon across the landscape, which was realized with the conservation practices and agroforestry, while also playing a crucial role in protecting surface runoff in the landscape. Future studies may consider valuation of the overall ecosystem services due to the land uses (conservation measures) and the trees by considering optimization of incorporating such technologies in the farming systems to reduce negative trade-offs.</p></div>\",\"PeriodicalId\":7610,\"journal\":{\"name\":\"Agroforestry Systems\",\"volume\":\"98 7\",\"pages\":\"2483 - 2498\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agroforestry Systems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10457-024-01043-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agroforestry Systems","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10457-024-01043-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Trees and grass buffers impact on soil carbon in an agroforestry alleycropping watershed
Perennial vegetation in farmlands can mitigate anthropogenic greenhouse gases (GHG) by capturing atmospheric carbon and storing it in the soil for extended periods. The objective of this study was to quantify soil organic carbon (SOC) concentrations and stocks under tree buffer (TB), grass buffer (GB), grass waterways (WW) and crop field (CS, corn-soybean rotation) to evaluate the significance of conservation measures in C sequestration projects. Soil samples were collected up to 1 m depth at upper, middle, and lower landscape positions from 26-year-old TB, GB, and WW in a watershed. The SOC concentration decreased with increasing soil depth for all four land uses. However, as expected, bulk density increased with increasing soil depth for all four land uses. It was highest for the CS land use. In 2023, for the depth of 0–10 cm, SOC increased by +0.63, +1.06, +1.37 and +1.63% in CS, GB, TB, and WW, respectively, since the land uses were established 26 years ago. Land uses had greater impacts on SOC stock in the top 50 cm depth, with WW (113.5 ± 12.9 Mg ha−1), TB (106 ± 14.5 Mg ha−1), and GB (102.4 ± 11.6 Mg ha−1) compared to CS (90.9 ± 10.2 Mg ha−1). However, at watershed level, with ~ 10% cover by TB or GB areas and the rest under CS, SOC stock up to 50 cm depth was respectively 91.6 and 91.2 Mg ha−1 compared to 90 Mg ha−1 by CS alone—1.3 to 1.8% increase. This is a significant increase in soil organic carbon across the landscape, which was realized with the conservation practices and agroforestry, while also playing a crucial role in protecting surface runoff in the landscape. Future studies may consider valuation of the overall ecosystem services due to the land uses (conservation measures) and the trees by considering optimization of incorporating such technologies in the farming systems to reduce negative trade-offs.
期刊介绍:
Agroforestry Systems is an international scientific journal that publishes results of novel, high impact original research, critical reviews and short communications on any aspect of agroforestry. The journal particularly encourages contributions that demonstrate the role of agroforestry in providing commodity as well non-commodity benefits such as ecosystem services. Papers dealing with both biophysical and socioeconomic aspects are welcome. These include results of investigations of a fundamental or applied nature dealing with integrated systems involving trees and crops and/or livestock. Manuscripts that are purely descriptive in nature or confirmatory in nature of well-established findings, and with limited international scope are discouraged. To be acceptable for publication, the information presented must be relevant to a context wider than the specific location where the study was undertaken, and provide new insight or make a significant contribution to the agroforestry knowledge base