对铋取代钐铁榴石晶体结构、随温度变化的磁化和介电弛豫机制的见解

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Shalini Verma, S. Ravi
{"title":"对铋取代钐铁榴石晶体结构、随温度变化的磁化和介电弛豫机制的见解","authors":"Shalini Verma,&nbsp;S. Ravi","doi":"10.1016/j.solidstatesciences.2024.107629","DOIUrl":null,"url":null,"abstract":"<div><p>The single phase <span><math><mrow><mi>S</mi><msub><mi>m</mi><mrow><mn>3</mn><mo>−</mo><mi>x</mi></mrow></msub><mi>B</mi><msub><mi>i</mi><mi>x</mi></msub><mi>F</mi><msub><mi>e</mi><mn>5</mn></msub><msub><mi>O</mi><mn>12</mn></msub></mrow></math></span> with <span><math><mrow><mi>x</mi><mo>=</mo><mn>0.0</mn><mo>,</mo><mn>0.2</mn><mo>,</mo><mn>0.4</mn></mrow></math></span> and <span><math><mrow><mn>0.6</mn></mrow></math></span> samples are synthesized by solid-state reaction method. We have systematically studied the structural, morphological, temperature dependent magnetic and electric properties. All the samples crystallize in simple cubic crystal structure and belongs to <span><math><mrow><mi>I</mi><mi>a</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>d</mi></mrow></math></span> space group. The lattice constant and bond angle between <span><math><mrow><mi>F</mi><mi>e</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>−</mo><mi>O</mi><mo>−</mo><mi>F</mi><mi>e</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> network is enhanced with Bi substitution. As a result, the ferrimagnetic transition temperature is also enhanced from <span><math><mrow><mn>565</mn><mspace></mspace><mi>K</mi></mrow></math></span> to <span><math><mrow><mn>569</mn><mspace></mspace><mi>K</mi></mrow></math></span>. We have examined the applicability of Bloch's and Cojocaru's laws to our temperature-dependent magnetization data and find that Bloch's <span><math><mrow><msup><mi>T</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span> law is not suitable due to geometrical asymmetry, long wavelength excitation, and local atomic disorders. However, Cojocaru's law which accounts for the geometrical aspects, provides a better fit to our magnetization data. Further, the impedance plots at room temperature exhibit no relaxation which is attributed to the limited mobility of charge carriers. On the other hand, the high temperature impedance data represents dielectric relaxation at a particular frequency. This frequency is used to determine the relaxation time which is fitted to Arrhenius law and activation energy is evaluated. The activation energy lies in between <span><math><mrow><mn>0.24</mn><mo>−</mo><mn>0.32</mn><mspace></mspace><mi>e</mi><mi>V</mi></mrow></math></span> which corresponds to the singly ionized oxygen vacancies. The conduction mechanism is analyzed with Variable range hopping model and the average hopping length and hopping energies are also determined for these garnet samples.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"154 ","pages":"Article 107629"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into crystal structure, temperature-dependent magnetization and dielectric relaxation mechanism in Bi substituted samarium iron garnet\",\"authors\":\"Shalini Verma,&nbsp;S. Ravi\",\"doi\":\"10.1016/j.solidstatesciences.2024.107629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The single phase <span><math><mrow><mi>S</mi><msub><mi>m</mi><mrow><mn>3</mn><mo>−</mo><mi>x</mi></mrow></msub><mi>B</mi><msub><mi>i</mi><mi>x</mi></msub><mi>F</mi><msub><mi>e</mi><mn>5</mn></msub><msub><mi>O</mi><mn>12</mn></msub></mrow></math></span> with <span><math><mrow><mi>x</mi><mo>=</mo><mn>0.0</mn><mo>,</mo><mn>0.2</mn><mo>,</mo><mn>0.4</mn></mrow></math></span> and <span><math><mrow><mn>0.6</mn></mrow></math></span> samples are synthesized by solid-state reaction method. We have systematically studied the structural, morphological, temperature dependent magnetic and electric properties. All the samples crystallize in simple cubic crystal structure and belongs to <span><math><mrow><mi>I</mi><mi>a</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>d</mi></mrow></math></span> space group. The lattice constant and bond angle between <span><math><mrow><mi>F</mi><mi>e</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>−</mo><mi>O</mi><mo>−</mo><mi>F</mi><mi>e</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> network is enhanced with Bi substitution. As a result, the ferrimagnetic transition temperature is also enhanced from <span><math><mrow><mn>565</mn><mspace></mspace><mi>K</mi></mrow></math></span> to <span><math><mrow><mn>569</mn><mspace></mspace><mi>K</mi></mrow></math></span>. We have examined the applicability of Bloch's and Cojocaru's laws to our temperature-dependent magnetization data and find that Bloch's <span><math><mrow><msup><mi>T</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span> law is not suitable due to geometrical asymmetry, long wavelength excitation, and local atomic disorders. However, Cojocaru's law which accounts for the geometrical aspects, provides a better fit to our magnetization data. Further, the impedance plots at room temperature exhibit no relaxation which is attributed to the limited mobility of charge carriers. On the other hand, the high temperature impedance data represents dielectric relaxation at a particular frequency. This frequency is used to determine the relaxation time which is fitted to Arrhenius law and activation energy is evaluated. The activation energy lies in between <span><math><mrow><mn>0.24</mn><mo>−</mo><mn>0.32</mn><mspace></mspace><mi>e</mi><mi>V</mi></mrow></math></span> which corresponds to the singly ionized oxygen vacancies. The conduction mechanism is analyzed with Variable range hopping model and the average hopping length and hopping energies are also determined for these garnet samples.</p></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"154 \",\"pages\":\"Article 107629\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255824001948\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824001948","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

我们采用固态反应方法合成了单相与和样品。我们对其结构、形态、温度相关磁性和电性进行了系统研究。所有样品都以简单的立方晶体结构结晶,属于空间群。随着铋的取代,晶格常数和网络之间的键角都得到了增强。我们研究了布洛赫定律和科霍卡鲁定律对随温度变化的磁化数据的适用性,发现由于几何不对称、长波长激发和局部原子紊乱,布洛赫定律并不适用。然而,考虑到几何方面的因素,Cojocaru定律能更好地拟合我们的磁化数据。此外,室温下的阻抗图没有表现出弛豫,这归因于电荷载流子的迁移率有限。另一方面,高温阻抗数据表示了特定频率下的介电松弛。该频率用于确定弛豫时间,弛豫时间与阿伦尼乌斯定律相吻合,并评估了活化能。活化能介于两者之间,与单电离氧空位相对应。利用可变范围跳变模型分析了传导机制,并确定了这些石榴石样品的平均跳变长度和跳变能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insights into crystal structure, temperature-dependent magnetization and dielectric relaxation mechanism in Bi substituted samarium iron garnet

Insights into crystal structure, temperature-dependent magnetization and dielectric relaxation mechanism in Bi substituted samarium iron garnet

Insights into crystal structure, temperature-dependent magnetization and dielectric relaxation mechanism in Bi substituted samarium iron garnet

The single phase Sm3xBixFe5O12 with x=0.0,0.2,0.4 and 0.6 samples are synthesized by solid-state reaction method. We have systematically studied the structural, morphological, temperature dependent magnetic and electric properties. All the samples crystallize in simple cubic crystal structure and belongs to Ia3d space group. The lattice constant and bond angle between Fe(a)OFe(d) network is enhanced with Bi substitution. As a result, the ferrimagnetic transition temperature is also enhanced from 565K to 569K. We have examined the applicability of Bloch's and Cojocaru's laws to our temperature-dependent magnetization data and find that Bloch's T3/2 law is not suitable due to geometrical asymmetry, long wavelength excitation, and local atomic disorders. However, Cojocaru's law which accounts for the geometrical aspects, provides a better fit to our magnetization data. Further, the impedance plots at room temperature exhibit no relaxation which is attributed to the limited mobility of charge carriers. On the other hand, the high temperature impedance data represents dielectric relaxation at a particular frequency. This frequency is used to determine the relaxation time which is fitted to Arrhenius law and activation energy is evaluated. The activation energy lies in between 0.240.32eV which corresponds to the singly ionized oxygen vacancies. The conduction mechanism is analyzed with Variable range hopping model and the average hopping length and hopping energies are also determined for these garnet samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信