Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"图形的稳健色度数","authors":"Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer","doi":"10.1007/s00373-024-02817-1","DOIUrl":null,"url":null,"abstract":"<p>A 1-removed subgraph <span>\\(G_f\\)</span> of a graph <span>\\(G=(V,E)\\)</span> is obtained by </p><dl><dt style=\"min-width:50px;\"><dfn>(i):</dfn></dt><dd>\n<p>selecting at most one edge <i>f</i>(<i>v</i>) for each vertex <span>\\(v\\in V\\)</span>, such that <span>\\(v\\in f(v)\\in E\\)</span> (the mapping <span>\\(f:V\\rightarrow E \\cup \\{\\varnothing \\}\\)</span> is allowed to be non-injective), and</p>\n</dd><dt style=\"min-width:50px;\"><dfn>(ii):</dfn></dt><dd>\n<p>deleting all the selected edges <i>f</i>(<i>v</i>) from the edge set <i>E</i> of <i>G</i>.</p>\n</dd></dl><p> Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as <span>\\(\\chi _1(G)\\)</span>. This invariant is defined as the minimum chromatic number <span>\\(\\chi (G_f)\\)</span> among all 1-removed subgraphs <span>\\(G_f\\)</span> of <i>G</i>. We also examine other standard graph invariants in a similar manner.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Robust Chromatic Number of Graphs\",\"authors\":\"Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer\",\"doi\":\"10.1007/s00373-024-02817-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A 1-removed subgraph <span>\\\\(G_f\\\\)</span> of a graph <span>\\\\(G=(V,E)\\\\)</span> is obtained by </p><dl><dt style=\\\"min-width:50px;\\\"><dfn>(i):</dfn></dt><dd>\\n<p>selecting at most one edge <i>f</i>(<i>v</i>) for each vertex <span>\\\\(v\\\\in V\\\\)</span>, such that <span>\\\\(v\\\\in f(v)\\\\in E\\\\)</span> (the mapping <span>\\\\(f:V\\\\rightarrow E \\\\cup \\\\{\\\\varnothing \\\\}\\\\)</span> is allowed to be non-injective), and</p>\\n</dd><dt style=\\\"min-width:50px;\\\"><dfn>(ii):</dfn></dt><dd>\\n<p>deleting all the selected edges <i>f</i>(<i>v</i>) from the edge set <i>E</i> of <i>G</i>.</p>\\n</dd></dl><p> Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as <span>\\\\(\\\\chi _1(G)\\\\)</span>. This invariant is defined as the minimum chromatic number <span>\\\\(\\\\chi (G_f)\\\\)</span> among all 1-removed subgraphs <span>\\\\(G_f\\\\)</span> of <i>G</i>. We also examine other standard graph invariants in a similar manner.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02817-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02817-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
一个图(G=(V,E))的1-删除子图(G_f\ )是通过(i):为每个顶点(v\in V)选择最多一条边f(v),使得(v\in f(v)\in E)得到的(映射(f:V\rightarrow E \cup \{\varnothing \}\)允许是非注入式的),并且(ii):从 G 的边集 E 中删除所有选中的边 f(v)。1-removed 子图的适当顶点着色被证明是早期研究一些 Turán 类型问题的有用工具。在本文中,我们介绍了对图不变式 1-robust 色度数的系统研究,表示为 (\chi _1(G)\)。这个不变量被定义为 G 的所有 1-removed 子图 \(G_f\) 中的最小色度数 \(\chi(G_f)\)。
A 1-removed subgraph \(G_f\) of a graph \(G=(V,E)\) is obtained by
(i):
selecting at most one edge f(v) for each vertex \(v\in V\), such that \(v\in f(v)\in E\) (the mapping \(f:V\rightarrow E \cup \{\varnothing \}\) is allowed to be non-injective), and
(ii):
deleting all the selected edges f(v) from the edge set E of G.
Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as \(\chi _1(G)\). This invariant is defined as the minimum chromatic number \(\chi (G_f)\) among all 1-removed subgraphs \(G_f\) of G. We also examine other standard graph invariants in a similar manner.