图形的稳健色度数

IF 0.6 4区 数学 Q3 MATHEMATICS
Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"图形的稳健色度数","authors":"Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer","doi":"10.1007/s00373-024-02817-1","DOIUrl":null,"url":null,"abstract":"<p>A 1-removed subgraph <span>\\(G_f\\)</span> of a graph <span>\\(G=(V,E)\\)</span> is obtained by </p><dl><dt style=\"min-width:50px;\"><dfn>(i):</dfn></dt><dd>\n<p>selecting at most one edge <i>f</i>(<i>v</i>) for each vertex <span>\\(v\\in V\\)</span>, such that <span>\\(v\\in f(v)\\in E\\)</span> (the mapping <span>\\(f:V\\rightarrow E \\cup \\{\\varnothing \\}\\)</span> is allowed to be non-injective), and</p>\n</dd><dt style=\"min-width:50px;\"><dfn>(ii):</dfn></dt><dd>\n<p>deleting all the selected edges <i>f</i>(<i>v</i>) from the edge set <i>E</i> of <i>G</i>.</p>\n</dd></dl><p> Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as <span>\\(\\chi _1(G)\\)</span>. This invariant is defined as the minimum chromatic number <span>\\(\\chi (G_f)\\)</span> among all 1-removed subgraphs <span>\\(G_f\\)</span> of <i>G</i>. We also examine other standard graph invariants in a similar manner.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"75 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Robust Chromatic Number of Graphs\",\"authors\":\"Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer\",\"doi\":\"10.1007/s00373-024-02817-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A 1-removed subgraph <span>\\\\(G_f\\\\)</span> of a graph <span>\\\\(G=(V,E)\\\\)</span> is obtained by </p><dl><dt style=\\\"min-width:50px;\\\"><dfn>(i):</dfn></dt><dd>\\n<p>selecting at most one edge <i>f</i>(<i>v</i>) for each vertex <span>\\\\(v\\\\in V\\\\)</span>, such that <span>\\\\(v\\\\in f(v)\\\\in E\\\\)</span> (the mapping <span>\\\\(f:V\\\\rightarrow E \\\\cup \\\\{\\\\varnothing \\\\}\\\\)</span> is allowed to be non-injective), and</p>\\n</dd><dt style=\\\"min-width:50px;\\\"><dfn>(ii):</dfn></dt><dd>\\n<p>deleting all the selected edges <i>f</i>(<i>v</i>) from the edge set <i>E</i> of <i>G</i>.</p>\\n</dd></dl><p> Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as <span>\\\\(\\\\chi _1(G)\\\\)</span>. This invariant is defined as the minimum chromatic number <span>\\\\(\\\\chi (G_f)\\\\)</span> among all 1-removed subgraphs <span>\\\\(G_f\\\\)</span> of <i>G</i>. We also examine other standard graph invariants in a similar manner.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02817-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02817-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个图(G=(V,E))的1-删除子图(G_f\ )是通过(i):为每个顶点(v\in V)选择最多一条边f(v),使得(v\in f(v)\in E)得到的(映射(f:V\rightarrow E \cup \{\varnothing \}\)允许是非注入式的),并且(ii):从 G 的边集 E 中删除所有选中的边 f(v)。1-removed 子图的适当顶点着色被证明是早期研究一些 Turán 类型问题的有用工具。在本文中,我们介绍了对图不变式 1-robust 色度数的系统研究,表示为 (\chi _1(G)\)。这个不变量被定义为 G 的所有 1-removed 子图 \(G_f\) 中的最小色度数 \(\chi(G_f)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Robust Chromatic Number of Graphs

A 1-removed subgraph \(G_f\) of a graph \(G=(V,E)\) is obtained by

(i):

selecting at most one edge f(v) for each vertex \(v\in V\), such that \(v\in f(v)\in E\) (the mapping \(f:V\rightarrow E \cup \{\varnothing \}\) is allowed to be non-injective), and

(ii):

deleting all the selected edges f(v) from the edge set E of G.

Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as \(\chi _1(G)\). This invariant is defined as the minimum chromatic number \(\chi (G_f)\) among all 1-removed subgraphs \(G_f\) of G. We also examine other standard graph invariants in a similar manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信