Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"图形的稳健色度数","authors":"Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer","doi":"10.1007/s00373-024-02817-1","DOIUrl":null,"url":null,"abstract":"<p>A 1-removed subgraph <span>\\(G_f\\)</span> of a graph <span>\\(G=(V,E)\\)</span> is obtained by </p><dl><dt style=\"min-width:50px;\"><dfn>(i):</dfn></dt><dd>\n<p>selecting at most one edge <i>f</i>(<i>v</i>) for each vertex <span>\\(v\\in V\\)</span>, such that <span>\\(v\\in f(v)\\in E\\)</span> (the mapping <span>\\(f:V\\rightarrow E \\cup \\{\\varnothing \\}\\)</span> is allowed to be non-injective), and</p>\n</dd><dt style=\"min-width:50px;\"><dfn>(ii):</dfn></dt><dd>\n<p>deleting all the selected edges <i>f</i>(<i>v</i>) from the edge set <i>E</i> of <i>G</i>.</p>\n</dd></dl><p> Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as <span>\\(\\chi _1(G)\\)</span>. This invariant is defined as the minimum chromatic number <span>\\(\\chi (G_f)\\)</span> among all 1-removed subgraphs <span>\\(G_f\\)</span> of <i>G</i>. We also examine other standard graph invariants in a similar manner.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"75 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Robust Chromatic Number of Graphs\",\"authors\":\"Gábor Bacsó, Balázs Patkós, Zsolt Tuza, Máté Vizer\",\"doi\":\"10.1007/s00373-024-02817-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A 1-removed subgraph <span>\\\\(G_f\\\\)</span> of a graph <span>\\\\(G=(V,E)\\\\)</span> is obtained by </p><dl><dt style=\\\"min-width:50px;\\\"><dfn>(i):</dfn></dt><dd>\\n<p>selecting at most one edge <i>f</i>(<i>v</i>) for each vertex <span>\\\\(v\\\\in V\\\\)</span>, such that <span>\\\\(v\\\\in f(v)\\\\in E\\\\)</span> (the mapping <span>\\\\(f:V\\\\rightarrow E \\\\cup \\\\{\\\\varnothing \\\\}\\\\)</span> is allowed to be non-injective), and</p>\\n</dd><dt style=\\\"min-width:50px;\\\"><dfn>(ii):</dfn></dt><dd>\\n<p>deleting all the selected edges <i>f</i>(<i>v</i>) from the edge set <i>E</i> of <i>G</i>.</p>\\n</dd></dl><p> Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as <span>\\\\(\\\\chi _1(G)\\\\)</span>. This invariant is defined as the minimum chromatic number <span>\\\\(\\\\chi (G_f)\\\\)</span> among all 1-removed subgraphs <span>\\\\(G_f\\\\)</span> of <i>G</i>. We also examine other standard graph invariants in a similar manner.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02817-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02817-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
一个图(G=(V,E))的1-删除子图(G_f\ )是通过(i):为每个顶点(v\in V)选择最多一条边f(v),使得(v\in f(v)\in E)得到的(映射(f:V\rightarrow E \cup \{\varnothing \}\)允许是非注入式的),并且(ii):从 G 的边集 E 中删除所有选中的边 f(v)。1-removed 子图的适当顶点着色被证明是早期研究一些 Turán 类型问题的有用工具。在本文中,我们介绍了对图不变式 1-robust 色度数的系统研究,表示为 (\chi _1(G)\)。这个不变量被定义为 G 的所有 1-removed 子图 \(G_f\) 中的最小色度数 \(\chi(G_f)\)。
A 1-removed subgraph \(G_f\) of a graph \(G=(V,E)\) is obtained by
(i):
selecting at most one edge f(v) for each vertex \(v\in V\), such that \(v\in f(v)\in E\) (the mapping \(f:V\rightarrow E \cup \{\varnothing \}\) is allowed to be non-injective), and
(ii):
deleting all the selected edges f(v) from the edge set E of G.
Proper vertex colorings of 1-removed subgraphs proved to be a useful tool for earlier research on some Turán-type problems. In this paper, we introduce a systematic investigation of the graph invariant 1-robust chromatic number, denoted as \(\chi _1(G)\). This invariant is defined as the minimum chromatic number \(\chi (G_f)\) among all 1-removed subgraphs \(G_f\) of G. We also examine other standard graph invariants in a similar manner.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.