FedRSC:针对多标签路面分类的联合学习分析

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ioannis V. Vondikakis;Ilias E. Panagiotopoulos;George J. Dimitrakopoulos
{"title":"FedRSC:针对多标签路面分类的联合学习分析","authors":"Ioannis V. Vondikakis;Ilias E. Panagiotopoulos;George J. Dimitrakopoulos","doi":"10.1109/OJITS.2024.3432176","DOIUrl":null,"url":null,"abstract":"The state of road surfaces can have a significant impact on vehicle handling, passenger comfort, safety, fuel consumption, and maintenance requirements. For this reason, it is important to analyze road conditions in order to improve traffic safety, optimize fuel efficiency, and provide a smoother travel experience. This research presents a federated learning analysis that brings together edge computing and cloud technology, by identifying various road conditions through a multi-label road surface classification analysis. The presented analysis prioritizes the privacy of road users’ data and leverages the advantages of collective data analysis while building confidence in the system. Multi-label classification is applied in order to capture complexity by assigning multiple relevant labels, thus providing a richer and more detailed understanding of the road conditions. According to the experiments, this approach efficient classifies road surface images, achieving comprehensive coverage even in scenarios where data from certain edges is limited.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"433-444"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10606293","citationCount":"0","resultStr":"{\"title\":\"FedRSC: A Federated Learning Analysis for Multi-Label Road Surface Classifications\",\"authors\":\"Ioannis V. Vondikakis;Ilias E. Panagiotopoulos;George J. Dimitrakopoulos\",\"doi\":\"10.1109/OJITS.2024.3432176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state of road surfaces can have a significant impact on vehicle handling, passenger comfort, safety, fuel consumption, and maintenance requirements. For this reason, it is important to analyze road conditions in order to improve traffic safety, optimize fuel efficiency, and provide a smoother travel experience. This research presents a federated learning analysis that brings together edge computing and cloud technology, by identifying various road conditions through a multi-label road surface classification analysis. The presented analysis prioritizes the privacy of road users’ data and leverages the advantages of collective data analysis while building confidence in the system. Multi-label classification is applied in order to capture complexity by assigning multiple relevant labels, thus providing a richer and more detailed understanding of the road conditions. According to the experiments, this approach efficient classifies road surface images, achieving comprehensive coverage even in scenarios where data from certain edges is limited.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"5 \",\"pages\":\"433-444\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10606293\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10606293/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10606293/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

路面状况会对车辆操控性、乘客舒适度、安全性、油耗和维护要求产生重大影响。因此,为了提高交通安全、优化燃油效率并提供更顺畅的出行体验,对路面状况进行分析非常重要。本研究提出了一种联合学习分析方法,将边缘计算和云技术结合起来,通过多标签路面分类分析来识别各种路况。本分析报告优先考虑了道路用户数据的隐私性,并充分利用了集体数据分析的优势,同时建立了对系统的信心。采用多标签分类是为了通过分配多个相关标签来捕捉复杂性,从而提供对路况更丰富、更详细的了解。实验结果表明,这种方法能有效地对路面图像进行分类,即使在某些边缘数据有限的情况下也能实现全面覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FedRSC: A Federated Learning Analysis for Multi-Label Road Surface Classifications
The state of road surfaces can have a significant impact on vehicle handling, passenger comfort, safety, fuel consumption, and maintenance requirements. For this reason, it is important to analyze road conditions in order to improve traffic safety, optimize fuel efficiency, and provide a smoother travel experience. This research presents a federated learning analysis that brings together edge computing and cloud technology, by identifying various road conditions through a multi-label road surface classification analysis. The presented analysis prioritizes the privacy of road users’ data and leverages the advantages of collective data analysis while building confidence in the system. Multi-label classification is applied in order to capture complexity by assigning multiple relevant labels, thus providing a richer and more detailed understanding of the road conditions. According to the experiments, this approach efficient classifies road surface images, achieving comprehensive coverage even in scenarios where data from certain edges is limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信