{"title":"土耳其 2023 年地震序列对历史中心石砌建筑造成的破坏","authors":"Elizabeth Vintzileou, Vasiliki Palieraki","doi":"10.1177/87552930241260263","DOIUrl":null,"url":null,"abstract":"Unreinforced stone masonry buildings represent a significant part of the building stock in the areas affected by the recent devastating earthquakes of 6 February 2023 in Turkey. Most of them were built before 2000, and, hence, they are not compliant with current seismic provisions. Severe damage or collapse was observed in a large number of low-rise stone masonry buildings, including many listed as monuments ones. The structural systems of masonry buildings in the historical center of two cities (namely, Gaziantep and Antakya) are presented herein, along with the typical damage observed. The causes of damage are qualitatively interpreted, wherever relevant evidence is available. To this purpose, the observed damage is compared to that occurred in other parts of the world, in structural systems similar to those of the area affected. Furthermore, the detrimental effect of inadequate pre-earthquake interventions is identified, while a critical discussion regarding frequently applied interventions, and the availability of design rules in current Codes and Guidelines, is initiated to pave the way toward efficient measures to be taken for the protection of surviving stone masonry buildings in Turkey and beyond.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage to stone masonry buildings in historical centers due to the 2023 earthquake sequence in Turkey\",\"authors\":\"Elizabeth Vintzileou, Vasiliki Palieraki\",\"doi\":\"10.1177/87552930241260263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unreinforced stone masonry buildings represent a significant part of the building stock in the areas affected by the recent devastating earthquakes of 6 February 2023 in Turkey. Most of them were built before 2000, and, hence, they are not compliant with current seismic provisions. Severe damage or collapse was observed in a large number of low-rise stone masonry buildings, including many listed as monuments ones. The structural systems of masonry buildings in the historical center of two cities (namely, Gaziantep and Antakya) are presented herein, along with the typical damage observed. The causes of damage are qualitatively interpreted, wherever relevant evidence is available. To this purpose, the observed damage is compared to that occurred in other parts of the world, in structural systems similar to those of the area affected. Furthermore, the detrimental effect of inadequate pre-earthquake interventions is identified, while a critical discussion regarding frequently applied interventions, and the availability of design rules in current Codes and Guidelines, is initiated to pave the way toward efficient measures to be taken for the protection of surviving stone masonry buildings in Turkey and beyond.\",\"PeriodicalId\":11392,\"journal\":{\"name\":\"Earthquake Spectra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Spectra\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/87552930241260263\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/87552930241260263","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Damage to stone masonry buildings in historical centers due to the 2023 earthquake sequence in Turkey
Unreinforced stone masonry buildings represent a significant part of the building stock in the areas affected by the recent devastating earthquakes of 6 February 2023 in Turkey. Most of them were built before 2000, and, hence, they are not compliant with current seismic provisions. Severe damage or collapse was observed in a large number of low-rise stone masonry buildings, including many listed as monuments ones. The structural systems of masonry buildings in the historical center of two cities (namely, Gaziantep and Antakya) are presented herein, along with the typical damage observed. The causes of damage are qualitatively interpreted, wherever relevant evidence is available. To this purpose, the observed damage is compared to that occurred in other parts of the world, in structural systems similar to those of the area affected. Furthermore, the detrimental effect of inadequate pre-earthquake interventions is identified, while a critical discussion regarding frequently applied interventions, and the availability of design rules in current Codes and Guidelines, is initiated to pave the way toward efficient measures to be taken for the protection of surviving stone masonry buildings in Turkey and beyond.
期刊介绍:
Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues.
EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.