{"title":"利用网络内容语义特征从网络日志中检测网络机器人","authors":"Rikhi Ram Jagat, Dilip Singh Sisodia, Pradeep Singh","doi":"10.1016/j.jnca.2024.103975","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, web robots are predominantly used for auto-accessing web content, sharing almost one-third of the total web traffic and often posing threats to various web applications’ security, privacy, and performance. Detecting these robots is essential, and both online and offline methods are employed. One popular offline method is the use of weblog feature-based automated learning. However, this method alone cannot accurately identify web robots that continuously evolve and camouflage. Web content features combined with weblog features are used to detect such robots based on the assumption that human users exhibit specific interests while robots randomly navigate web pages. State-of-the-art web content-based feature methods lack the ability to generate coherent topics, which can confound the performance of classification models. Therefore, we propose a new content semantic feature extraction method that uses the LDA2Vec topic model, combining the strengths of LDA and the Word2Vec model to produce more semantically coherent topics by exploiting website content for a web session. To effectively detect web robots, web resource content semantic features are combined with log-based features in the proposed web robot detection approach. The proposed approach is evaluated in an e-commerce website access logs and content data. The F-score, balanced accuracy, G-mean, and Jaccard similarity are used for performance measures, and the coherence score metric is used to determine the number of topics for a session. Experimental results demonstrate that a combination of weblogs and content semantic features is effective in web robot detection.</p></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"230 ","pages":"Article 103975"},"PeriodicalIF":7.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting web content semantic features to detect web robots from weblogs\",\"authors\":\"Rikhi Ram Jagat, Dilip Singh Sisodia, Pradeep Singh\",\"doi\":\"10.1016/j.jnca.2024.103975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, web robots are predominantly used for auto-accessing web content, sharing almost one-third of the total web traffic and often posing threats to various web applications’ security, privacy, and performance. Detecting these robots is essential, and both online and offline methods are employed. One popular offline method is the use of weblog feature-based automated learning. However, this method alone cannot accurately identify web robots that continuously evolve and camouflage. Web content features combined with weblog features are used to detect such robots based on the assumption that human users exhibit specific interests while robots randomly navigate web pages. State-of-the-art web content-based feature methods lack the ability to generate coherent topics, which can confound the performance of classification models. Therefore, we propose a new content semantic feature extraction method that uses the LDA2Vec topic model, combining the strengths of LDA and the Word2Vec model to produce more semantically coherent topics by exploiting website content for a web session. To effectively detect web robots, web resource content semantic features are combined with log-based features in the proposed web robot detection approach. The proposed approach is evaluated in an e-commerce website access logs and content data. The F-score, balanced accuracy, G-mean, and Jaccard similarity are used for performance measures, and the coherence score metric is used to determine the number of topics for a session. Experimental results demonstrate that a combination of weblogs and content semantic features is effective in web robot detection.</p></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"230 \",\"pages\":\"Article 103975\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804524001528\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524001528","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Exploiting web content semantic features to detect web robots from weblogs
Nowadays, web robots are predominantly used for auto-accessing web content, sharing almost one-third of the total web traffic and often posing threats to various web applications’ security, privacy, and performance. Detecting these robots is essential, and both online and offline methods are employed. One popular offline method is the use of weblog feature-based automated learning. However, this method alone cannot accurately identify web robots that continuously evolve and camouflage. Web content features combined with weblog features are used to detect such robots based on the assumption that human users exhibit specific interests while robots randomly navigate web pages. State-of-the-art web content-based feature methods lack the ability to generate coherent topics, which can confound the performance of classification models. Therefore, we propose a new content semantic feature extraction method that uses the LDA2Vec topic model, combining the strengths of LDA and the Word2Vec model to produce more semantically coherent topics by exploiting website content for a web session. To effectively detect web robots, web resource content semantic features are combined with log-based features in the proposed web robot detection approach. The proposed approach is evaluated in an e-commerce website access logs and content data. The F-score, balanced accuracy, G-mean, and Jaccard similarity are used for performance measures, and the coherence score metric is used to determine the number of topics for a session. Experimental results demonstrate that a combination of weblogs and content semantic features is effective in web robot detection.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.