{"title":"一石二鸟:通过网络剪枝实现语义分割的领域泛化","authors":"Yawei Luo, Ping Liu, Yi Yang","doi":"10.1007/s11263-024-02194-5","DOIUrl":null,"url":null,"abstract":"<p>Deep models are notoriously known to perform poorly when encountering new domains with different statistics. To alleviate this issue, we present a new domain generalization method based on network pruning, dubbed NPDG. Our core idea is to prune the filters or attention heads that are more sensitive to domain shift while preserving those domain-invariant ones. To this end, we propose a new pruning policy tailored to improve generalization ability, which identifies the filter and head sensibility of domain shift by judging its activation variance among different domains (<i>unary manner</i>) and its correlation to other filters (<i>binary manner</i>). To better reveal those potentially sensitive filters and heads, we present a differentiable style perturbation scheme to imitate the domain variance dynamically. NPDG is trained on a single source domain and can be applied to both CNN- and Transformer-based backbones. To our knowledge, we are among the pioneers in tackling domain generalization in segmentation via network pruning. NPDG not only improves the generalization ability of a segmentation model but also decreases its computation cost. Extensive experiments demonstrate the state-of-the-art generalization performance of NPDG with a lighter-weight structure.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"56 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kill Two Birds with One Stone: Domain Generalization for Semantic Segmentation via Network Pruning\",\"authors\":\"Yawei Luo, Ping Liu, Yi Yang\",\"doi\":\"10.1007/s11263-024-02194-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep models are notoriously known to perform poorly when encountering new domains with different statistics. To alleviate this issue, we present a new domain generalization method based on network pruning, dubbed NPDG. Our core idea is to prune the filters or attention heads that are more sensitive to domain shift while preserving those domain-invariant ones. To this end, we propose a new pruning policy tailored to improve generalization ability, which identifies the filter and head sensibility of domain shift by judging its activation variance among different domains (<i>unary manner</i>) and its correlation to other filters (<i>binary manner</i>). To better reveal those potentially sensitive filters and heads, we present a differentiable style perturbation scheme to imitate the domain variance dynamically. NPDG is trained on a single source domain and can be applied to both CNN- and Transformer-based backbones. To our knowledge, we are among the pioneers in tackling domain generalization in segmentation via network pruning. NPDG not only improves the generalization ability of a segmentation model but also decreases its computation cost. Extensive experiments demonstrate the state-of-the-art generalization performance of NPDG with a lighter-weight structure.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02194-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02194-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Kill Two Birds with One Stone: Domain Generalization for Semantic Segmentation via Network Pruning
Deep models are notoriously known to perform poorly when encountering new domains with different statistics. To alleviate this issue, we present a new domain generalization method based on network pruning, dubbed NPDG. Our core idea is to prune the filters or attention heads that are more sensitive to domain shift while preserving those domain-invariant ones. To this end, we propose a new pruning policy tailored to improve generalization ability, which identifies the filter and head sensibility of domain shift by judging its activation variance among different domains (unary manner) and its correlation to other filters (binary manner). To better reveal those potentially sensitive filters and heads, we present a differentiable style perturbation scheme to imitate the domain variance dynamically. NPDG is trained on a single source domain and can be applied to both CNN- and Transformer-based backbones. To our knowledge, we are among the pioneers in tackling domain generalization in segmentation via network pruning. NPDG not only improves the generalization ability of a segmentation model but also decreases its computation cost. Extensive experiments demonstrate the state-of-the-art generalization performance of NPDG with a lighter-weight structure.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.