从 Poincaré 到 Log-Sobolev 的 Langevin 蒙特卡洛分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sinho Chewi, Murat A. Erdogdu, Mufan Li, Ruoqi Shen, Matthew S. Zhang
{"title":"从 Poincaré 到 Log-Sobolev 的 Langevin 蒙特卡洛分析","authors":"Sinho Chewi, Murat A. Erdogdu, Mufan Li, Ruoqi Shen, Matthew S. Zhang","doi":"10.1007/s10208-024-09667-6","DOIUrl":null,"url":null,"abstract":"<p>Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution <span>\\(\\pi \\)</span> under the sole assumption that <span>\\(\\pi \\)</span> satisfies a Poincaré inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or Rényi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that <span>\\(\\pi \\)</span> satisfies either a Latała–Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincaré and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev\",\"authors\":\"Sinho Chewi, Murat A. Erdogdu, Mufan Li, Ruoqi Shen, Matthew S. Zhang\",\"doi\":\"10.1007/s10208-024-09667-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution <span>\\\\(\\\\pi \\\\)</span> under the sole assumption that <span>\\\\(\\\\pi \\\\)</span> satisfies a Poincaré inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or Rényi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that <span>\\\\(\\\\pi \\\\)</span> satisfies either a Latała–Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincaré and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09667-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09667-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

从经典上讲,在 \(\pi \) 满足Poincaré不等式的唯一假设下,连续时间朗之文扩散以指数级速度收敛到其静态分布 \(\pi \)。然而,利用这一事实为离散时间朗之文蒙特卡洛(LMC)算法提供保证要困难得多,因为需要处理秩方或雷尼发散,而且之前的工作主要集中在强对数凹目标上。在这项工作中,我们首次为 LMC 提供了收敛性保证,假设 \(\pi \) 满足拉塔瓦-奥列兹凯维奇不等式或修正的 log-Sobolev 不等式,它们在 Poincaré 和 log-Sobolev 设置之间进行插值。与之前的研究不同,我们的结果允许弱平稳性,并且不需要凸性或消散性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev

Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev

Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary distribution \(\pi \) under the sole assumption that \(\pi \) satisfies a Poincaré inequality. Using this fact to provide guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more challenging due to the need for working with chi-squared or Rényi divergences, and prior works have largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees for LMC assuming that \(\pi \) satisfies either a Latała–Oleszkiewicz or modified log-Sobolev inequality, which interpolates between the Poincaré and log-Sobolev settings. Unlike prior works, our results allow for weak smoothness and do not require convexity or dissipativity conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信