负弯曲表面中拉普拉奇特征值的最大多重性

IF 2.4 1区 数学 Q1 MATHEMATICS
Cyril Letrouit, Simon Machado
{"title":"负弯曲表面中拉普拉奇特征值的最大多重性","authors":"Cyril Letrouit, Simon Machado","doi":"10.1007/s00039-024-00691-w","DOIUrl":null,"url":null,"abstract":"<p>In this work, we obtain the first upper bound on the multiplicity of Laplacian eigenvalues for negatively curved surfaces which is sublinear in the genus <i>g</i>. Our proof relies on a trace argument for the heat kernel, and on the idea of leveraging an <i>r</i>-net in the surface to control this trace. This last idea was introduced in 2021 for similar spectral purposes in the context of graphs of bounded degree. Our method is robust enough to also yield an upper bound on the “approximate multiplicity” of eigenvalues, i.e., the number of eigenvalues in windows of size 1/log<sup><i>β</i></sup>(<i>g</i>), <i>β</i>&gt;0. This work provides new insights on a conjecture by Colin de Verdière and new ways to transfer spectral results from graphs to surfaces.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"57 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Multiplicity of Laplacian Eigenvalues in Negatively Curved Surfaces\",\"authors\":\"Cyril Letrouit, Simon Machado\",\"doi\":\"10.1007/s00039-024-00691-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we obtain the first upper bound on the multiplicity of Laplacian eigenvalues for negatively curved surfaces which is sublinear in the genus <i>g</i>. Our proof relies on a trace argument for the heat kernel, and on the idea of leveraging an <i>r</i>-net in the surface to control this trace. This last idea was introduced in 2021 for similar spectral purposes in the context of graphs of bounded degree. Our method is robust enough to also yield an upper bound on the “approximate multiplicity” of eigenvalues, i.e., the number of eigenvalues in windows of size 1/log<sup><i>β</i></sup>(<i>g</i>), <i>β</i>&gt;0. This work provides new insights on a conjecture by Colin de Verdière and new ways to transfer spectral results from graphs to surfaces.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00691-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00691-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们的证明依赖于热核的迹论证,以及利用曲面中的 r 网来控制这一迹的想法。最后一个想法是 2021 年在有界度图的背景下为类似的光谱目的引入的。我们的方法足够稳健,还能得出特征值 "近似多重性 "的上界,即大小为 1/logβ(g), β>0 的窗口中的特征值个数。这项工作为科林-德-韦尔迪埃(Colin de Verdière)的猜想提供了新的见解,也为将谱结果从图转移到曲面提供了新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Multiplicity of Laplacian Eigenvalues in Negatively Curved Surfaces

In this work, we obtain the first upper bound on the multiplicity of Laplacian eigenvalues for negatively curved surfaces which is sublinear in the genus g. Our proof relies on a trace argument for the heat kernel, and on the idea of leveraging an r-net in the surface to control this trace. This last idea was introduced in 2021 for similar spectral purposes in the context of graphs of bounded degree. Our method is robust enough to also yield an upper bound on the “approximate multiplicity” of eigenvalues, i.e., the number of eigenvalues in windows of size 1/logβ(g), β>0. This work provides new insights on a conjecture by Colin de Verdière and new ways to transfer spectral results from graphs to surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信