{"title":"面向临床医生的医学人工智能:迷失的认知视角。","authors":"","doi":"10.1016/S2589-7500(24)00095-5","DOIUrl":null,"url":null,"abstract":"<div><p>The development and commercialisation of medical decision systems based on artificial intelligence (AI) far outpaces our understanding of their value for clinicians. Although applicable across many forms of medicine, we focus on characterising the diagnostic decisions of radiologists through the concept of ecologically bounded reasoning, review the differences between clinician decision making and medical AI model decision making, and reveal how these differences pose fundamental challenges for integrating AI into radiology. We argue that clinicians are contextually motivated, mentally resourceful decision makers, whereas AI models are contextually stripped, correlational decision makers, and discuss misconceptions about clinician–AI interaction stemming from this misalignment of capabilities. We outline how future research on clinician–AI interaction could better address the cognitive considerations of decision making and be used to enhance the safety and usability of AI models in high-risk medical decision-making contexts.</p></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589750024000955/pdfft?md5=c4262279ee0696247e86b8dc47f4a153&pid=1-s2.0-S2589750024000955-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Medical artificial intelligence for clinicians: the lost cognitive perspective\",\"authors\":\"\",\"doi\":\"10.1016/S2589-7500(24)00095-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development and commercialisation of medical decision systems based on artificial intelligence (AI) far outpaces our understanding of their value for clinicians. Although applicable across many forms of medicine, we focus on characterising the diagnostic decisions of radiologists through the concept of ecologically bounded reasoning, review the differences between clinician decision making and medical AI model decision making, and reveal how these differences pose fundamental challenges for integrating AI into radiology. We argue that clinicians are contextually motivated, mentally resourceful decision makers, whereas AI models are contextually stripped, correlational decision makers, and discuss misconceptions about clinician–AI interaction stemming from this misalignment of capabilities. We outline how future research on clinician–AI interaction could better address the cognitive considerations of decision making and be used to enhance the safety and usability of AI models in high-risk medical decision-making contexts.</p></div>\",\"PeriodicalId\":48534,\"journal\":{\"name\":\"Lancet Digital Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589750024000955/pdfft?md5=c4262279ee0696247e86b8dc47f4a153&pid=1-s2.0-S2589750024000955-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Digital Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589750024000955\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750024000955","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Medical artificial intelligence for clinicians: the lost cognitive perspective
The development and commercialisation of medical decision systems based on artificial intelligence (AI) far outpaces our understanding of their value for clinicians. Although applicable across many forms of medicine, we focus on characterising the diagnostic decisions of radiologists through the concept of ecologically bounded reasoning, review the differences between clinician decision making and medical AI model decision making, and reveal how these differences pose fundamental challenges for integrating AI into radiology. We argue that clinicians are contextually motivated, mentally resourceful decision makers, whereas AI models are contextually stripped, correlational decision makers, and discuss misconceptions about clinician–AI interaction stemming from this misalignment of capabilities. We outline how future research on clinician–AI interaction could better address the cognitive considerations of decision making and be used to enhance the safety and usability of AI models in high-risk medical decision-making contexts.
期刊介绍:
The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health.
The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health.
We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.