区间段上函数平均值的多项式内插法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Ludovico Bruni Bruno, Wolfgang Erb
{"title":"区间段上函数平均值的多项式内插法","authors":"Ludovico Bruni Bruno, Wolfgang Erb","doi":"10.1137/23m1598271","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1759-1781, August 2024. <br/> Abstract. Motivated by polynomial approximations of differential forms, we study analytical and numerical properties of a polynomial interpolation problem that relies on function averages over interval segments. The usage of segment data gives rise to new theoretical and practical aspects that distinguish this problem considerably from classical nodal interpolation. We will analyze fundamental mathematical properties of this problem as existence, uniqueness, and numerical conditioning of its solution. In a few selected scenarios, we will provide concrete conditions for unisolvence and explicit Lagrange-type basis systems for its representation. To study the numerical conditioning, we will provide respective concrete bounds for the Lebesgue constant.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial Interpolation of Function Averages on Interval Segments\",\"authors\":\"Ludovico Bruni Bruno, Wolfgang Erb\",\"doi\":\"10.1137/23m1598271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1759-1781, August 2024. <br/> Abstract. Motivated by polynomial approximations of differential forms, we study analytical and numerical properties of a polynomial interpolation problem that relies on function averages over interval segments. The usage of segment data gives rise to new theoretical and practical aspects that distinguish this problem considerably from classical nodal interpolation. We will analyze fundamental mathematical properties of this problem as existence, uniqueness, and numerical conditioning of its solution. In a few selected scenarios, we will provide concrete conditions for unisolvence and explicit Lagrange-type basis systems for its representation. To study the numerical conditioning, we will provide respective concrete bounds for the Lebesgue constant.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1598271\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1598271","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 4 期第 1759-1781 页,2024 年 8 月。 摘要。受微分形式多项式近似的启发,我们研究了多项式插值问题的分析和数值特性,该问题依赖于区间段上的函数平均值。段数据的使用带来了新的理论和实践方面的问题,使该问题与经典的节点插值问题大为不同。我们将分析该问题的基本数学特性,如其解的存在性、唯一性和数值条件。在一些选定的情况下,我们将提供不孤立的具体条件,并为其表示提供明确的拉格朗日型基础系统。为了研究数值条件,我们将分别提供 Lebesgue 常数的具体边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial Interpolation of Function Averages on Interval Segments
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1759-1781, August 2024.
Abstract. Motivated by polynomial approximations of differential forms, we study analytical and numerical properties of a polynomial interpolation problem that relies on function averages over interval segments. The usage of segment data gives rise to new theoretical and practical aspects that distinguish this problem considerably from classical nodal interpolation. We will analyze fundamental mathematical properties of this problem as existence, uniqueness, and numerical conditioning of its solution. In a few selected scenarios, we will provide concrete conditions for unisolvence and explicit Lagrange-type basis systems for its representation. To study the numerical conditioning, we will provide respective concrete bounds for the Lebesgue constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信