Xiaolin Zhang, Lei Yin, Sicong Zhu, Ruiqing Cheng, Yao Wen, Jun He
{"title":"多铁氧体隧道结中的自旋相关传输和多电阻态","authors":"Xiaolin Zhang, Lei Yin, Sicong Zhu, Ruiqing Cheng, Yao Wen, Jun He","doi":"10.1103/physrevb.110.024428","DOIUrl":null,"url":null,"abstract":"Multiferroic tunneling junctions (MFTJs), which comprise magnetic electrodes and extremely thin ferroelectric tunneling barriers, are promising contenders for nonvolatile memory applications. Noncollinear antiferromagnetic <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math> with time-reversal symmetry-breaking polarization properties and ferroelectric <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>α</mi><mtext>−</mtext><msub><mi>In</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></math> may open up the possibility of constructing room-temperature MFTJs. In this study, we investigate the spin-correlation transport in the MFTJs with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi><mo>/</mo><mi>BN</mi><mo>/</mo><mi>α</mi><mtext>−</mtext><msub><mi>In</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow><mo>/</mo><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math> structure using first-principles calculations. The resistance in this structure can be manipulated by tuning the directions of both the Néel vector of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math> and the electric polarization of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>α</mi><mtext>−</mtext><msub><mi>In</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></math> layer. Thus, multiple tunneling resistive states can be realized. We predict that huge tunneling magnetoresistance up to 6650% can be obtained by switching the magnetically oriented Néel vectors of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math>, and more than 8000% tunneling electrical resistance can be obtained by controlling the ferroelectric structure of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>α</mi><mtext>−</mtext><msub><mi>In</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></math>. Our work underscores the potential applications of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math> in multiferroic nonvolatile memories and lays the foundation for the development of ultrafast and efficient spintronic devices utilizing antiferromagnets.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-correlation transport and multiple resistive states in multiferroic tunnel junctions\",\"authors\":\"Xiaolin Zhang, Lei Yin, Sicong Zhu, Ruiqing Cheng, Yao Wen, Jun He\",\"doi\":\"10.1103/physrevb.110.024428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiferroic tunneling junctions (MFTJs), which comprise magnetic electrodes and extremely thin ferroelectric tunneling barriers, are promising contenders for nonvolatile memory applications. Noncollinear antiferromagnetic <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math> with time-reversal symmetry-breaking polarization properties and ferroelectric <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>α</mi><mtext>−</mtext><msub><mi>In</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></math> may open up the possibility of constructing room-temperature MFTJs. In this study, we investigate the spin-correlation transport in the MFTJs with <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi><mo>/</mo><mi>BN</mi><mo>/</mo><mi>α</mi><mtext>−</mtext><msub><mi>In</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow><mo>/</mo><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math> structure using first-principles calculations. The resistance in this structure can be manipulated by tuning the directions of both the Néel vector of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math> and the electric polarization of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>α</mi><mtext>−</mtext><msub><mi>In</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></math> layer. Thus, multiple tunneling resistive states can be realized. We predict that huge tunneling magnetoresistance up to 6650% can be obtained by switching the magnetically oriented Néel vectors of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math>, and more than 8000% tunneling electrical resistance can be obtained by controlling the ferroelectric structure of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>α</mi><mtext>−</mtext><msub><mi>In</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></math>. Our work underscores the potential applications of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>3</mn></msub><mi>Sn</mi></mrow></math> in multiferroic nonvolatile memories and lays the foundation for the development of ultrafast and efficient spintronic devices utilizing antiferromagnets.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.024428\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.024428","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Spin-correlation transport and multiple resistive states in multiferroic tunnel junctions
Multiferroic tunneling junctions (MFTJs), which comprise magnetic electrodes and extremely thin ferroelectric tunneling barriers, are promising contenders for nonvolatile memory applications. Noncollinear antiferromagnetic with time-reversal symmetry-breaking polarization properties and ferroelectric may open up the possibility of constructing room-temperature MFTJs. In this study, we investigate the spin-correlation transport in the MFTJs with structure using first-principles calculations. The resistance in this structure can be manipulated by tuning the directions of both the Néel vector of and the electric polarization of the layer. Thus, multiple tunneling resistive states can be realized. We predict that huge tunneling magnetoresistance up to 6650% can be obtained by switching the magnetically oriented Néel vectors of , and more than 8000% tunneling electrical resistance can be obtained by controlling the ferroelectric structure of . Our work underscores the potential applications of in multiferroic nonvolatile memories and lays the foundation for the development of ultrafast and efficient spintronic devices utilizing antiferromagnets.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter