{"title":"准二维受挫自旋-1 三角晶格反铁磁体 Ca3NiNb2O9:一种近似自旋液体","authors":"Sonia Deswal, Deepu Kumar, Dibyata Rout, Surjeet Singh, Pradeep Kumar","doi":"10.1103/physrevb.110.024430","DOIUrl":null,"url":null,"abstract":"The spin-1 triangular lattice Heisenberg antiferromagnet <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msub><mi mathvariant=\"normal\">a</mi><mn>3</mn></msub><mi>NiN</mi><msub><mi mathvariant=\"normal\">b</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>9</mn></msub></mrow></math> and its sister compounds are conjectured to promote the formation of many-body quantum entangled states such as a quantum spin liquid (QSL), an exotic phase which features fractionalized quasiparticle excitations and emergent gauges. We probe the single crystal of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">C</mi><msub><mi mathvariant=\"normal\">a</mi><mn>3</mn></msub><mi>NiN</mi><msub><mi mathvariant=\"normal\">b</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>9</mn></msub></mrow></math> using an in-depth Raman spectroscopic technique. Our measurements provide evidence for the fractionalized excitations, suggesting that the current system is in close proximity to the QSL phase. This is also in line with the proposed higher-order fractional magnetization plateau in this system, as these plateaus have an intricate relationship with the spin entanglement. We observed unconventional underlying scattering as a broad continuum with an intensity that shows fermionic statistics. Additionally, phonon modes show Fano asymmetry, also conjectured as a fingerprint of the spin-liquid phase, and above a critical Raman shift also show fermionic statistics in their intensity evolution.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-two-dimensional frustrated spin-1 triangular lattice antiferromagnet Ca3NiNb2O9: A proximate spin liquid\",\"authors\":\"Sonia Deswal, Deepu Kumar, Dibyata Rout, Surjeet Singh, Pradeep Kumar\",\"doi\":\"10.1103/physrevb.110.024430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spin-1 triangular lattice Heisenberg antiferromagnet <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mn>3</mn></msub><mi>NiN</mi><msub><mi mathvariant=\\\"normal\\\">b</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>9</mn></msub></mrow></math> and its sister compounds are conjectured to promote the formation of many-body quantum entangled states such as a quantum spin liquid (QSL), an exotic phase which features fractionalized quasiparticle excitations and emergent gauges. We probe the single crystal of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">C</mi><msub><mi mathvariant=\\\"normal\\\">a</mi><mn>3</mn></msub><mi>NiN</mi><msub><mi mathvariant=\\\"normal\\\">b</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>9</mn></msub></mrow></math> using an in-depth Raman spectroscopic technique. Our measurements provide evidence for the fractionalized excitations, suggesting that the current system is in close proximity to the QSL phase. This is also in line with the proposed higher-order fractional magnetization plateau in this system, as these plateaus have an intricate relationship with the spin entanglement. We observed unconventional underlying scattering as a broad continuum with an intensity that shows fermionic statistics. Additionally, phonon modes show Fano asymmetry, also conjectured as a fingerprint of the spin-liquid phase, and above a critical Raman shift also show fermionic statistics in their intensity evolution.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.024430\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.024430","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
The spin-1 triangular lattice Heisenberg antiferromagnet and its sister compounds are conjectured to promote the formation of many-body quantum entangled states such as a quantum spin liquid (QSL), an exotic phase which features fractionalized quasiparticle excitations and emergent gauges. We probe the single crystal of using an in-depth Raman spectroscopic technique. Our measurements provide evidence for the fractionalized excitations, suggesting that the current system is in close proximity to the QSL phase. This is also in line with the proposed higher-order fractional magnetization plateau in this system, as these plateaus have an intricate relationship with the spin entanglement. We observed unconventional underlying scattering as a broad continuum with an intensity that shows fermionic statistics. Additionally, phonon modes show Fano asymmetry, also conjectured as a fingerprint of the spin-liquid phase, and above a critical Raman shift also show fermionic statistics in their intensity evolution.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter