来自神经形态焦点堆栈的混合全焦成像。

Minggui Teng;Hanyue Lou;Yixin Yang;Tiejun Huang;Boxin Shi
{"title":"来自神经形态焦点堆栈的混合全焦成像。","authors":"Minggui Teng;Hanyue Lou;Yixin Yang;Tiejun Huang;Boxin Shi","doi":"10.1109/TPAMI.2024.3433607","DOIUrl":null,"url":null,"abstract":"Creating an image focal stack requires multiple shots, which captures images at different depths within the same scene. Such methods are not suitable for scenes undergoing continuous changes. Achieving an all-in-focus image from a single shot poses significant challenges, due to the highly ill-posed nature of rectifying defocus and deblurring from a single image. In this paper, to restore an all-in-focus image, we introduce the neuromorphic focal stack, which is defined as neuromorphic signal streams captured by an event/ a spike camera during a continuous focal sweep, aiming to restore an all-in-focus image. Given an RGB image focused at any distance, we harness the high temporal resolution of neuromorphic signal streams. From neuromorphic signal streams, we automatically select refocusing timestamps and reconstruct corresponding refocused images to form a focal stack. Guided by the neuromorphic signal around the selected timestamps, we can merge the focal stack using proper weights and restore a sharp all-in-focus image. We test our method on two distinct neuromorphic cameras. Experimental results from both synthetic and real datasets demonstrate a marked improvement over existing State-of-the-Art methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid All-in-Focus Imaging From Neuromorphic Focal Stack\",\"authors\":\"Minggui Teng;Hanyue Lou;Yixin Yang;Tiejun Huang;Boxin Shi\",\"doi\":\"10.1109/TPAMI.2024.3433607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating an image focal stack requires multiple shots, which captures images at different depths within the same scene. Such methods are not suitable for scenes undergoing continuous changes. Achieving an all-in-focus image from a single shot poses significant challenges, due to the highly ill-posed nature of rectifying defocus and deblurring from a single image. In this paper, to restore an all-in-focus image, we introduce the neuromorphic focal stack, which is defined as neuromorphic signal streams captured by an event/ a spike camera during a continuous focal sweep, aiming to restore an all-in-focus image. Given an RGB image focused at any distance, we harness the high temporal resolution of neuromorphic signal streams. From neuromorphic signal streams, we automatically select refocusing timestamps and reconstruct corresponding refocused images to form a focal stack. Guided by the neuromorphic signal around the selected timestamps, we can merge the focal stack using proper weights and restore a sharp all-in-focus image. We test our method on two distinct neuromorphic cameras. Experimental results from both synthetic and real datasets demonstrate a marked improvement over existing State-of-the-Art methods.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10609564/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10609564/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

创建图像焦点堆栈需要多次拍摄,在同一场景中捕捉不同深度的图像。这种方法不适合连续变化的场景。由于从单个图像纠正散焦和去模糊具有高度不确定性,因此从单个镜头获得全焦图像是一项重大挑战。在本文中,为了还原全焦图像,我们引入了神经形态焦点堆栈,它被定义为事件/尖峰摄像机在连续焦点扫描过程中捕获的神经形态信号流,旨在还原全焦图像。对于任意距离聚焦的 RGB 图像,我们利用神经形态信号流的高时间分辨率。从神经形态信号流中,我们自动选择重新聚焦的时间戳,并重建相应的重新聚焦图像,形成焦点堆栈。在所选时间戳周围神经形态信号的引导下,我们可以使用适当的权重合并焦点堆栈,还原清晰的全焦图像。我们在两台不同的神经形态相机上测试了我们的方法。合成数据集和真实数据集的实验结果表明,我们的方法明显优于现有的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid All-in-Focus Imaging From Neuromorphic Focal Stack
Creating an image focal stack requires multiple shots, which captures images at different depths within the same scene. Such methods are not suitable for scenes undergoing continuous changes. Achieving an all-in-focus image from a single shot poses significant challenges, due to the highly ill-posed nature of rectifying defocus and deblurring from a single image. In this paper, to restore an all-in-focus image, we introduce the neuromorphic focal stack, which is defined as neuromorphic signal streams captured by an event/ a spike camera during a continuous focal sweep, aiming to restore an all-in-focus image. Given an RGB image focused at any distance, we harness the high temporal resolution of neuromorphic signal streams. From neuromorphic signal streams, we automatically select refocusing timestamps and reconstruct corresponding refocused images to form a focal stack. Guided by the neuromorphic signal around the selected timestamps, we can merge the focal stack using proper weights and restore a sharp all-in-focus image. We test our method on two distinct neuromorphic cameras. Experimental results from both synthetic and real datasets demonstrate a marked improvement over existing State-of-the-Art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信