Thomas Aubert , Aurélien Hallé , Philippe Gerard , Michael Butnaru , Wilfrid Graff , Guillaume Rigoulot , Guillaume Auberger , Olivier Aubert
{"title":"脊柱与臀部关系的原型分析确定了不同的脊柱骨盆轮廓。","authors":"Thomas Aubert , Aurélien Hallé , Philippe Gerard , Michael Butnaru , Wilfrid Graff , Guillaume Rigoulot , Guillaume Auberger , Olivier Aubert","doi":"10.1016/j.otsr.2024.103944","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>The position of the pelvis in the sagittal plane can vary considerably between different functional positions. Adapting the position of the acetabular cup in relation to the alignment between the spine and the hip of each individual, prior to prosthesis placement, can prevent the risk of prosthetic impingement. Taken individually, risk factors for unfavorable spinopelvic kinematics can be difficult to interpret when trying to precisely predict which patients are at risk. Furthermore, the use of classifications or algorithms can be complex, most often associated with limited values and often difficult to apply in current practices of risk assessment.</p></div><div><h3>Hypothesis</h3><p>We hypothesized that the deconstruction of the data matrix including age and spinopelvic parameters (SPT, LL, PI, LF and PI-LL) correlated with the analysis of spinopelvic kinematics could be used to define an individualized hip-spine relationship.</p></div><div><h3>Material and method</h3><p>We applied archetypal analysis, which is a probabilistic, data-driven and unsupervised approach, to a complete phenotype cohort of 330 patients before total hip arthroplasty to define the spinopelvic profile of each individual using the spinopelvic parameters without threshold value. For each archetype, we analyzed the spinopelvic kinematics, not implemented in the creation of the archetypes.</p></div><div><h3>Results</h3><p>An unsupervised learning method revealed seven archetypes with distinct spinopelvic kinematic profiles ranging from −8.9 ° to 13.15 ° (p = 0.0001) from standing to sitting and −5. 35 ° to −10.81 ° (p = 0.0001) from supine to standing. Archetype 1 represents the “ideal” patient (A1); young patients without spinopelvic anomaly and the least at risk of mobility anomaly. Followed by 3 archetypes without sagittal imbalance according to their lumbar lordosis and pelvic incidence, from the highest to the lowest (archetypes 2–4), archetype 4 exposing a greater risk of spinopelvic kinematic anomaly compared to others. Then 2 archetypes with sagittal imbalance: archetype 5, with an immobile pelvis in the horizontal plane from standing to sitting position in anterior tilt and archetype A6, with significant posterior pelvic tilt standing, likely compensating for the imbalance and associated with the greatest anomaly of spinopelvic kinematics. Finally, archetype 7 with the stiffest lumbar spine without sagittal imbalance and significant unfavorable kinematics from standing to sitting.</p></div><div><h3>Conclusion</h3><p>An archetypal approach to patients before hip replacement can refine diagnostic and prognostic features associated with the hip-spine relationship and reduced heterogeneity, thereby improving spinopelvic characterization. This risk stratification of spinopelvic kinematic abnormalities could make it possible to target patients who require adapted positioning or types of implants before prosthetic surgery.</p></div><div><h3>Level of evidence</h3><p>IV retrospective study.</p></div>","PeriodicalId":54664,"journal":{"name":"Orthopaedics & Traumatology-Surgery & Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877056824002007/pdfft?md5=35275327ce3c95235a5d89d03e25a40e&pid=1-s2.0-S1877056824002007-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Archetype analysis of the spine-hip relationship identifies distinct spinopelvic profiles\",\"authors\":\"Thomas Aubert , Aurélien Hallé , Philippe Gerard , Michael Butnaru , Wilfrid Graff , Guillaume Rigoulot , Guillaume Auberger , Olivier Aubert\",\"doi\":\"10.1016/j.otsr.2024.103944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>The position of the pelvis in the sagittal plane can vary considerably between different functional positions. Adapting the position of the acetabular cup in relation to the alignment between the spine and the hip of each individual, prior to prosthesis placement, can prevent the risk of prosthetic impingement. Taken individually, risk factors for unfavorable spinopelvic kinematics can be difficult to interpret when trying to precisely predict which patients are at risk. Furthermore, the use of classifications or algorithms can be complex, most often associated with limited values and often difficult to apply in current practices of risk assessment.</p></div><div><h3>Hypothesis</h3><p>We hypothesized that the deconstruction of the data matrix including age and spinopelvic parameters (SPT, LL, PI, LF and PI-LL) correlated with the analysis of spinopelvic kinematics could be used to define an individualized hip-spine relationship.</p></div><div><h3>Material and method</h3><p>We applied archetypal analysis, which is a probabilistic, data-driven and unsupervised approach, to a complete phenotype cohort of 330 patients before total hip arthroplasty to define the spinopelvic profile of each individual using the spinopelvic parameters without threshold value. For each archetype, we analyzed the spinopelvic kinematics, not implemented in the creation of the archetypes.</p></div><div><h3>Results</h3><p>An unsupervised learning method revealed seven archetypes with distinct spinopelvic kinematic profiles ranging from −8.9 ° to 13.15 ° (p = 0.0001) from standing to sitting and −5. 35 ° to −10.81 ° (p = 0.0001) from supine to standing. Archetype 1 represents the “ideal” patient (A1); young patients without spinopelvic anomaly and the least at risk of mobility anomaly. Followed by 3 archetypes without sagittal imbalance according to their lumbar lordosis and pelvic incidence, from the highest to the lowest (archetypes 2–4), archetype 4 exposing a greater risk of spinopelvic kinematic anomaly compared to others. Then 2 archetypes with sagittal imbalance: archetype 5, with an immobile pelvis in the horizontal plane from standing to sitting position in anterior tilt and archetype A6, with significant posterior pelvic tilt standing, likely compensating for the imbalance and associated with the greatest anomaly of spinopelvic kinematics. Finally, archetype 7 with the stiffest lumbar spine without sagittal imbalance and significant unfavorable kinematics from standing to sitting.</p></div><div><h3>Conclusion</h3><p>An archetypal approach to patients before hip replacement can refine diagnostic and prognostic features associated with the hip-spine relationship and reduced heterogeneity, thereby improving spinopelvic characterization. This risk stratification of spinopelvic kinematic abnormalities could make it possible to target patients who require adapted positioning or types of implants before prosthetic surgery.</p></div><div><h3>Level of evidence</h3><p>IV retrospective study.</p></div>\",\"PeriodicalId\":54664,\"journal\":{\"name\":\"Orthopaedics & Traumatology-Surgery & Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877056824002007/pdfft?md5=35275327ce3c95235a5d89d03e25a40e&pid=1-s2.0-S1877056824002007-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orthopaedics & Traumatology-Surgery & Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877056824002007\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthopaedics & Traumatology-Surgery & Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877056824002007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Archetype analysis of the spine-hip relationship identifies distinct spinopelvic profiles
Introduction
The position of the pelvis in the sagittal plane can vary considerably between different functional positions. Adapting the position of the acetabular cup in relation to the alignment between the spine and the hip of each individual, prior to prosthesis placement, can prevent the risk of prosthetic impingement. Taken individually, risk factors for unfavorable spinopelvic kinematics can be difficult to interpret when trying to precisely predict which patients are at risk. Furthermore, the use of classifications or algorithms can be complex, most often associated with limited values and often difficult to apply in current practices of risk assessment.
Hypothesis
We hypothesized that the deconstruction of the data matrix including age and spinopelvic parameters (SPT, LL, PI, LF and PI-LL) correlated with the analysis of spinopelvic kinematics could be used to define an individualized hip-spine relationship.
Material and method
We applied archetypal analysis, which is a probabilistic, data-driven and unsupervised approach, to a complete phenotype cohort of 330 patients before total hip arthroplasty to define the spinopelvic profile of each individual using the spinopelvic parameters without threshold value. For each archetype, we analyzed the spinopelvic kinematics, not implemented in the creation of the archetypes.
Results
An unsupervised learning method revealed seven archetypes with distinct spinopelvic kinematic profiles ranging from −8.9 ° to 13.15 ° (p = 0.0001) from standing to sitting and −5. 35 ° to −10.81 ° (p = 0.0001) from supine to standing. Archetype 1 represents the “ideal” patient (A1); young patients without spinopelvic anomaly and the least at risk of mobility anomaly. Followed by 3 archetypes without sagittal imbalance according to their lumbar lordosis and pelvic incidence, from the highest to the lowest (archetypes 2–4), archetype 4 exposing a greater risk of spinopelvic kinematic anomaly compared to others. Then 2 archetypes with sagittal imbalance: archetype 5, with an immobile pelvis in the horizontal plane from standing to sitting position in anterior tilt and archetype A6, with significant posterior pelvic tilt standing, likely compensating for the imbalance and associated with the greatest anomaly of spinopelvic kinematics. Finally, archetype 7 with the stiffest lumbar spine without sagittal imbalance and significant unfavorable kinematics from standing to sitting.
Conclusion
An archetypal approach to patients before hip replacement can refine diagnostic and prognostic features associated with the hip-spine relationship and reduced heterogeneity, thereby improving spinopelvic characterization. This risk stratification of spinopelvic kinematic abnormalities could make it possible to target patients who require adapted positioning or types of implants before prosthetic surgery.
期刊介绍:
Orthopaedics & Traumatology: Surgery & Research (OTSR) publishes original scientific work in English related to all domains of orthopaedics. Original articles, Reviews, Technical notes and Concise follow-up of a former OTSR study are published in English in electronic form only and indexed in the main international databases.