腿部动脉自动机器人多普勒超声造影。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Jonas Osburg, Alexandra Scheibert, Marco Horn, Ravn Pater, Floris Ernst
{"title":"腿部动脉自动机器人多普勒超声造影。","authors":"Jonas Osburg, Alexandra Scheibert, Marco Horn, Ravn Pater, Floris Ernst","doi":"10.1007/s11548-024-03235-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Robot-assisted systems offer an opportunity to support the diagnostic and therapeutic treatment of vascular diseases to reduce radiation exposure and support the limited medical staff in vascular medicine. In the diagnosis and follow-up care of vascular pathologies, Doppler ultrasound has become the preferred diagnostic tool. The study presents a robotic system for automatic Doppler ultrasound examinations of patients' leg vessels.</p><p><strong>Methods: </strong>The robotic system consists of a redundant 7 DoF serial manipulator, to which a 3D ultrasound probe is attached. A compliant control was employed, whereby the transducer was guided along the vessel with a defined contact force. Visual servoing was used to correct the position of the probe during the scan so that the vessel can always be properly visualized. To track the vessel's position, methods based on template matching and Doppler sonography were used.</p><p><strong>Results: </strong>Our system was able to successfully scan the femoral artery of seven volunteers automatically for a distance of 20 cm. In particular, our approach using Doppler ultrasound data showed high robustness and an accuracy of 10.7 (±3.1) px in determining the vessel's position and thus outperformed our template matching approach, whereby an accuracy of 13.9 (±6.4) px was achieved.</p><p><strong>Conclusions: </strong>The developed system enables automated robotic ultrasound examinations of vessels and thus represents an opportunity to reduce radiation exposure and staff workload. The integration of Doppler ultrasound improves the accuracy and robustness of vessel tracking, and could thus contribute to the realization of routine robotic vascular examinations and potential endovascular interventions.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442516/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic robotic doppler sonography of leg arteries.\",\"authors\":\"Jonas Osburg, Alexandra Scheibert, Marco Horn, Ravn Pater, Floris Ernst\",\"doi\":\"10.1007/s11548-024-03235-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Robot-assisted systems offer an opportunity to support the diagnostic and therapeutic treatment of vascular diseases to reduce radiation exposure and support the limited medical staff in vascular medicine. In the diagnosis and follow-up care of vascular pathologies, Doppler ultrasound has become the preferred diagnostic tool. The study presents a robotic system for automatic Doppler ultrasound examinations of patients' leg vessels.</p><p><strong>Methods: </strong>The robotic system consists of a redundant 7 DoF serial manipulator, to which a 3D ultrasound probe is attached. A compliant control was employed, whereby the transducer was guided along the vessel with a defined contact force. Visual servoing was used to correct the position of the probe during the scan so that the vessel can always be properly visualized. To track the vessel's position, methods based on template matching and Doppler sonography were used.</p><p><strong>Results: </strong>Our system was able to successfully scan the femoral artery of seven volunteers automatically for a distance of 20 cm. In particular, our approach using Doppler ultrasound data showed high robustness and an accuracy of 10.7 (±3.1) px in determining the vessel's position and thus outperformed our template matching approach, whereby an accuracy of 13.9 (±6.4) px was achieved.</p><p><strong>Conclusions: </strong>The developed system enables automated robotic ultrasound examinations of vessels and thus represents an opportunity to reduce radiation exposure and staff workload. The integration of Doppler ultrasound improves the accuracy and robustness of vessel tracking, and could thus contribute to the realization of routine robotic vascular examinations and potential endovascular interventions.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442516/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03235-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03235-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:机器人辅助系统为血管疾病的诊断和治疗提供了支持,减少了辐射暴露,并为血管医学领域有限的医务人员提供了支持。在血管病变的诊断和后续治疗中,多普勒超声已成为首选诊断工具。本研究介绍了一种对患者腿部血管进行自动多普勒超声检查的机器人系统:该机器人系统由一个冗余的 7 DoF 串行机械手组成,机械手上安装有一个 3D 超声波探头。该系统采用顺应式控制,以确定的接触力引导探头沿血管移动。视觉伺服用于在扫描过程中校正探头的位置,以便始终正确地观察血管。为了跟踪血管的位置,我们使用了基于模板匹配和多普勒超声的方法:结果:我们的系统能够成功地自动扫描七名志愿者的股动脉,扫描距离为 20 厘米。特别是,我们使用多普勒超声数据的方法显示出很高的鲁棒性,在确定血管位置方面的准确度达到了 10.7 (±3.1) px,因此优于我们的模板匹配方法,后者的准确度达到了 13.9 (±6.4) px:所开发的系统可对血管进行自动机器人超声检查,因此是减少辐射和工作人员工作量的一个机会。多普勒超声的整合提高了血管追踪的准确性和稳健性,从而有助于实现常规机器人血管检查和潜在的血管内介入治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automatic robotic doppler sonography of leg arteries.

Automatic robotic doppler sonography of leg arteries.

Purpose: Robot-assisted systems offer an opportunity to support the diagnostic and therapeutic treatment of vascular diseases to reduce radiation exposure and support the limited medical staff in vascular medicine. In the diagnosis and follow-up care of vascular pathologies, Doppler ultrasound has become the preferred diagnostic tool. The study presents a robotic system for automatic Doppler ultrasound examinations of patients' leg vessels.

Methods: The robotic system consists of a redundant 7 DoF serial manipulator, to which a 3D ultrasound probe is attached. A compliant control was employed, whereby the transducer was guided along the vessel with a defined contact force. Visual servoing was used to correct the position of the probe during the scan so that the vessel can always be properly visualized. To track the vessel's position, methods based on template matching and Doppler sonography were used.

Results: Our system was able to successfully scan the femoral artery of seven volunteers automatically for a distance of 20 cm. In particular, our approach using Doppler ultrasound data showed high robustness and an accuracy of 10.7 (±3.1) px in determining the vessel's position and thus outperformed our template matching approach, whereby an accuracy of 13.9 (±6.4) px was achieved.

Conclusions: The developed system enables automated robotic ultrasound examinations of vessels and thus represents an opportunity to reduce radiation exposure and staff workload. The integration of Doppler ultrasound improves the accuracy and robustness of vessel tracking, and could thus contribute to the realization of routine robotic vascular examinations and potential endovascular interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信