整合自动编码器和图卷积网络,预测乳腺癌药物反应。

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
V Abinas, U Abhinav, E M Haneem, A Vishnusankar, K A Abdul Nazeer
{"title":"整合自动编码器和图卷积网络,预测乳腺癌药物反应。","authors":"V Abinas, U Abhinav, E M Haneem, A Vishnusankar, K A Abdul Nazeer","doi":"10.1142/S0219720024500136","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and objectives:</b> Breast cancer is the most prevalent type of cancer among women. The effectiveness of anticancer pharmacological therapy may get adversely affected by tumor heterogeneity that includes genetic and transcriptomic features. This leads to clinical variability in patient response to therapeutic drugs. Anticancer drug design and cancer understanding require precise identification of cancer drug responses. The performance of drug response prediction models can be improved by integrating multi-omics data and drug structure data. <b>Methods:</b> In this paper, we propose an Autoencoder (AE) and Graph Convolutional Network (AGCN) for drug response prediction, which integrates multi-omics data and drug structure data. Specifically, we first converted the high dimensional representation of each omic data to a lower dimensional representation using an AE for each omic data set. Subsequently, these individual features are combined with drug structure data obtained using a Graph Convolutional Network and given to a Convolutional Neural Network to calculate IC[Formula: see text] values for every combination of cell lines and drugs. Then a threshold IC[Formula: see text] value is obtained for each drug by performing K-means clustering of their known IC[Formula: see text] values. Finally, with the help of this threshold value, cell lines are classified as either sensitive or resistant to each drug. <b>Results:</b> Experimental results indicate that AGCN has an accuracy of 0.82 and performs better than many existing methods. In addition to that, we have done external validation of AGCN using data taken from The Cancer Genome Atlas (TCGA) clinical database, and we got an accuracy of 0.91. <b>Conclusion:</b> According to the results obtained, concatenating multi-omics data with drug structure data using AGCN for drug response prediction tasks greatly improves the accuracy of the prediction task.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"22 3","pages":"2450013"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of autoencoder and graph convolutional network for predicting breast cancer drug response.\",\"authors\":\"V Abinas, U Abhinav, E M Haneem, A Vishnusankar, K A Abdul Nazeer\",\"doi\":\"10.1142/S0219720024500136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background and objectives:</b> Breast cancer is the most prevalent type of cancer among women. The effectiveness of anticancer pharmacological therapy may get adversely affected by tumor heterogeneity that includes genetic and transcriptomic features. This leads to clinical variability in patient response to therapeutic drugs. Anticancer drug design and cancer understanding require precise identification of cancer drug responses. The performance of drug response prediction models can be improved by integrating multi-omics data and drug structure data. <b>Methods:</b> In this paper, we propose an Autoencoder (AE) and Graph Convolutional Network (AGCN) for drug response prediction, which integrates multi-omics data and drug structure data. Specifically, we first converted the high dimensional representation of each omic data to a lower dimensional representation using an AE for each omic data set. Subsequently, these individual features are combined with drug structure data obtained using a Graph Convolutional Network and given to a Convolutional Neural Network to calculate IC[Formula: see text] values for every combination of cell lines and drugs. Then a threshold IC[Formula: see text] value is obtained for each drug by performing K-means clustering of their known IC[Formula: see text] values. Finally, with the help of this threshold value, cell lines are classified as either sensitive or resistant to each drug. <b>Results:</b> Experimental results indicate that AGCN has an accuracy of 0.82 and performs better than many existing methods. In addition to that, we have done external validation of AGCN using data taken from The Cancer Genome Atlas (TCGA) clinical database, and we got an accuracy of 0.91. <b>Conclusion:</b> According to the results obtained, concatenating multi-omics data with drug structure data using AGCN for drug response prediction tasks greatly improves the accuracy of the prediction task.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"22 3\",\"pages\":\"2450013\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720024500136\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720024500136","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:乳腺癌是女性中发病率最高的癌症类型。抗癌药物治疗的有效性可能会受到肿瘤异质性(包括遗传和转录组特征)的不利影响。这导致患者对治疗药物的临床反应存在差异。抗癌药物的设计和对癌症的理解需要对癌症药物反应进行精确识别。通过整合多组学数据和药物结构数据,可以提高药物反应预测模型的性能。方法:本文提出了一种用于药物反应预测的自动编码器(AE)和图卷积网络(AGCN),它整合了多组学数据和药物结构数据。具体来说,我们首先使用 AE 将每个 omic 数据集的高维表示转换为低维表示。然后,将这些单个特征与使用图卷积网络获得的药物结构数据结合起来,再交给卷积神经网络计算细胞系和药物每种组合的 IC[计算公式:见正文]值。然后,通过对已知的 IC[计算公式:见正文]值进行 K-means 聚类,为每种药物得出一个 IC[计算公式:见正文]阈值。最后,在该阈值的帮助下,细胞系被划分为对每种药物敏感或耐药。结果:实验结果表明,AGCN 的准确率为 0.82,优于许多现有方法。此外,我们还使用癌症基因组图谱(TCGA)临床数据库中的数据对 AGCN 进行了外部验证,结果发现其准确率为 0.91。结论根据研究结果,使用 AGCN 将多组学数据与药物结构数据串联起来用于药物反应预测任务,大大提高了预测任务的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of autoencoder and graph convolutional network for predicting breast cancer drug response.

Background and objectives: Breast cancer is the most prevalent type of cancer among women. The effectiveness of anticancer pharmacological therapy may get adversely affected by tumor heterogeneity that includes genetic and transcriptomic features. This leads to clinical variability in patient response to therapeutic drugs. Anticancer drug design and cancer understanding require precise identification of cancer drug responses. The performance of drug response prediction models can be improved by integrating multi-omics data and drug structure data. Methods: In this paper, we propose an Autoencoder (AE) and Graph Convolutional Network (AGCN) for drug response prediction, which integrates multi-omics data and drug structure data. Specifically, we first converted the high dimensional representation of each omic data to a lower dimensional representation using an AE for each omic data set. Subsequently, these individual features are combined with drug structure data obtained using a Graph Convolutional Network and given to a Convolutional Neural Network to calculate IC[Formula: see text] values for every combination of cell lines and drugs. Then a threshold IC[Formula: see text] value is obtained for each drug by performing K-means clustering of their known IC[Formula: see text] values. Finally, with the help of this threshold value, cell lines are classified as either sensitive or resistant to each drug. Results: Experimental results indicate that AGCN has an accuracy of 0.82 and performs better than many existing methods. In addition to that, we have done external validation of AGCN using data taken from The Cancer Genome Atlas (TCGA) clinical database, and we got an accuracy of 0.91. Conclusion: According to the results obtained, concatenating multi-omics data with drug structure data using AGCN for drug response prediction tasks greatly improves the accuracy of the prediction task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信