FetMRQC:用于多中心胎儿脑部磁共振成像的强大质量控制系统。

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Thomas Sanchez , Oscar Esteban , Yvan Gomez , Alexandre Pron , Mériam Koob , Vincent Dunet , Nadine Girard , Andras Jakab , Elisenda Eixarch , Guillaume Auzias , Meritxell Bach Cuadra
{"title":"FetMRQC:用于多中心胎儿脑部磁共振成像的强大质量控制系统。","authors":"Thomas Sanchez ,&nbsp;Oscar Esteban ,&nbsp;Yvan Gomez ,&nbsp;Alexandre Pron ,&nbsp;Mériam Koob ,&nbsp;Vincent Dunet ,&nbsp;Nadine Girard ,&nbsp;Andras Jakab ,&nbsp;Elisenda Eixarch ,&nbsp;Guillaume Auzias ,&nbsp;Meritxell Bach Cuadra","doi":"10.1016/j.media.2024.103282","DOIUrl":null,"url":null,"abstract":"<div><p>Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis, allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts’ ratings using random forests. We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13 different scanners. Our study shows that FetMRQC’s predictions generalize well to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed new insights on the developing human brain.</p></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136184152400207X/pdfft?md5=b8161959d3d40e266571c6882081e246&pid=1-s2.0-S136184152400207X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"FetMRQC: A robust quality control system for multi-centric fetal brain MRI\",\"authors\":\"Thomas Sanchez ,&nbsp;Oscar Esteban ,&nbsp;Yvan Gomez ,&nbsp;Alexandre Pron ,&nbsp;Mériam Koob ,&nbsp;Vincent Dunet ,&nbsp;Nadine Girard ,&nbsp;Andras Jakab ,&nbsp;Elisenda Eixarch ,&nbsp;Guillaume Auzias ,&nbsp;Meritxell Bach Cuadra\",\"doi\":\"10.1016/j.media.2024.103282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis, allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts’ ratings using random forests. We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13 different scanners. Our study shows that FetMRQC’s predictions generalize well to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed new insights on the developing human brain.</p></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S136184152400207X/pdfft?md5=b8161959d3d40e266571c6882081e246&pid=1-s2.0-S136184152400207X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136184152400207X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136184152400207X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

胎儿脑部核磁共振成像正日益成为围产期诊断中神经超声的重要补充,可从根本上了解胎儿在整个妊娠期的脑部发育情况。然而,胎儿运动的不可控性和采集方案的不一致性导致数据质量参差不齐,可能对后续研究结果产生偏差。我们提出的 FetMRQC 是一个开源机器学习框架,用于自动图像质量评估和质量控制,对临床数据异质性引起的领域偏移具有鲁棒性。FetMRQC 从未经处理的解剖磁共振成像中提取一系列质量指标,并将它们结合起来,使用随机森林预测专家的评分。我们在一个开创性的大型多样化数据集上验证了我们的框架,该数据集包含来自 4 个临床中心和 13 个不同扫描仪的 1600 多张人工评分的胎儿大脑 T2 加权图像。我们的研究表明,FetMRQC 的预测能很好地泛化到未见过的数据中,同时具有可解释性。FetMRQC 是向更强大的胎儿脑神经成像迈出的一步,有可能为人类大脑的发育提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FetMRQC: A robust quality control system for multi-centric fetal brain MRI

Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis, allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts’ ratings using random forests. We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13 different scanners. Our study shows that FetMRQC’s predictions generalize well to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed new insights on the developing human brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信