Shu-Han Zhang , Jing Yin , Lian-Ju Jing , Yao Cheng , Yu-Lu Miao , Bo Fan , Hui-Feng Zhang , Cai-Hong Yang , Shao-Shuai Wang , Yan Li , Xiang-Ying Jiao , Yan-Ying Fan
{"title":"以星形胶质细胞 TDAG8 为靶点的延迟二氧化碳后处理技术可改善小鼠受控皮层撞击损伤后的功能预后。","authors":"Shu-Han Zhang , Jing Yin , Lian-Ju Jing , Yao Cheng , Yu-Lu Miao , Bo Fan , Hui-Feng Zhang , Cai-Hong Yang , Shao-Shuai Wang , Yan Li , Xiang-Ying Jiao , Yan-Ying Fan","doi":"10.1016/j.expneurol.2024.114892","DOIUrl":null,"url":null,"abstract":"<div><p>T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO<sub>2</sub> postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8<sup>−/−</sup> mice received DCPC daily by transiently inhaling 10% CO<sub>2</sub> after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8<sup>−/−</sup> mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8<sup>−/−</sup> mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14–28 were much weaker than those of DCPC on Days 3–28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"380 ","pages":"Article 114892"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting astrocytic TDAG8 with delayed CO2 postconditioning improves functional outcomes after controlled cortical impact injury in mice\",\"authors\":\"Shu-Han Zhang , Jing Yin , Lian-Ju Jing , Yao Cheng , Yu-Lu Miao , Bo Fan , Hui-Feng Zhang , Cai-Hong Yang , Shao-Shuai Wang , Yan Li , Xiang-Ying Jiao , Yan-Ying Fan\",\"doi\":\"10.1016/j.expneurol.2024.114892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO<sub>2</sub> postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8<sup>−/−</sup> mice received DCPC daily by transiently inhaling 10% CO<sub>2</sub> after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8<sup>−/−</sup> mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8<sup>−/−</sup> mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14–28 were much weaker than those of DCPC on Days 3–28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.</p></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"380 \",\"pages\":\"Article 114892\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488624002188\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624002188","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Targeting astrocytic TDAG8 with delayed CO2 postconditioning improves functional outcomes after controlled cortical impact injury in mice
T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO2 postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8−/− mice received DCPC daily by transiently inhaling 10% CO2 after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8−/− mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8−/− mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14–28 were much weaker than those of DCPC on Days 3–28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.