Ayumi Koshiba, Mariko Nakano, Yuuki Hirata, Rie Konishi, Yuta Matsuoka, Yuta Miwa, Ayana Mori, Akihiko Kondo, Tsutomu Tanaka
{"title":"利用脂肪分解蓍草菌提高乙酸异丁酯和乙酸异戊酯的产量。","authors":"Ayumi Koshiba, Mariko Nakano, Yuuki Hirata, Rie Konishi, Yuta Matsuoka, Yuta Miwa, Ayana Mori, Akihiko Kondo, Tsutomu Tanaka","doi":"10.1002/btpr.3499","DOIUrl":null,"url":null,"abstract":"<p><p>Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3499"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced production of isobutyl and isoamyl acetate using Yarrowia lipolytica.\",\"authors\":\"Ayumi Koshiba, Mariko Nakano, Yuuki Hirata, Rie Konishi, Yuta Matsuoka, Yuta Miwa, Ayana Mori, Akihiko Kondo, Tsutomu Tanaka\",\"doi\":\"10.1002/btpr.3499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e3499\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.3499\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3499","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhanced production of isobutyl and isoamyl acetate using Yarrowia lipolytica.
Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.